EE608: Final Exam for Spring 1998

Name:

Login:

Student ID:

1. (20 points)
2. (20 points)
3. (20 points)
4. (20 points)
5. (20 points)
Total: (100 points)

This test is closed book, closed note. You may not use a calculator or any
other resources other than the formulae and algorithm handout provided by
Professor Harper. If you are not a member of the class, you must obtain
permission to take the exam.

1. Answer the following questions concerning algorithm basics. (20 points
total)

(a) Consider the following code segment. Determine as tight a bound as
you can on the number of iterations for the while loop. (5 points)

1. r+1

2.t nxn*xn

3. while r < n

4. dor+r+r+r

(b) Solve the following recurrence in closed form. (5 points)

] e() ifn=1,
T(n)_{T(n—1)+n2 n> 1.

(c) Prove or disprove the following. Let f(n) and g(n) be two mono-
tonically increasing positive functions such that f(n) = o(g(n)) and
the limit as n goes to infinity of f(n) is infinity, then lg(f(n)) =

o(lg(g(n))). (5 points)

(d) Suppose that you have two algorithms A and B such that the worst-
case running time of A is 3n? + 3n and the worst-case running time
of B is 20nlgn + 3n + 6. Describe what factors would impact your
choice of algorithm. (5 points)

2. Answer the following questions concerning dynamic set operations and
data structures (e.g., hash tables, binary search trees, red-black trees).
(20 points total)

(a) Describe the concept of universal hashing. Explain all of the re-
quirements of a universal collection of hash functions. (5 points)

(b) Let T" be a binary search tree, z be a leaf node, and y be z’s parent.
Show that keyly| is either the smallest key in T" larger than key|z] or
the largest key in 7" smaller than key[z]. (5 points)

(c) Describe two dynamic set operations for which using a balanced bi-
nary search tree is more time efficient than the same operations on
a heap. Explain your choices. Under what circumstances is a heap
preferred to a balanced binary search tree? (5 points)

(d) How is tree imbalance in red-black trees detected during the insertion
of new nodes into the tree? What operations are used by red-black
trees to restore tree balance? Why is it that these operations restore
tree balanace? Be precise and to the point. (5 points)

3. Consider the problem of constructing an optimal binary search tree, which
is a binary search tree constructed in such a way as to minimize the
expected number of comparisons required to search for keys based on
their expected frequency of occurrence in the search process. For example,
suppose out of every 18 searches in a tree, we expect the keys to appear
with the following frequencies:

| INDEX | Key | Frequency |
1 4

O Ut W N
QEHEmgoaw e
N T o

7
| Total | | 18 |

The two binary search trees below meet the binary search tree property
with A< B<C <D < E < F <G, but tree (b) is a lower cost tree
given the key frequencies specified in the above table. Tree (a) requires
51 comparisons if the 18 keys (i.e., 4 A’s, 2 B’s, etc.) are searched for
in that tree (as shown in the table below). Tree (b), on the other hand,
requires only 41 comparisons; hence, the tree has a lower cost than Tree
(a). The table below shows how the number of comparisons for Tree (a)
and (b) are calculated.

| INDEX | Key | Frequency | Comparisons for (a) | Comparisons for (b) |

1 A 4 8 8
2 B 2 6 6
3 C 1 1 4
4 D 3 9 3
5 E 5 20 10
6 F 2 4 6
7 G 1 3 4
[Total | [18] 51 A1

The goal is to create an optimal binary search tree over key[1]. .. key[n].
If we know what the root of the optimal binary search tree is, say key[k],
then we also know that key[1]...key[k — 1] are stored in the left subtree
and keylk + 1]...key[n] are stored in the right subtree. This problem
clearly has the optimal substructure property; optimal binary search trees
are made up of optimal binary search trees.

Below is a dynamic program for creating an optimal binary search tree.
Note that key is an array such that key[1] < key[2] < ... < key[n]. Note
also that fregq[i] corresponds to the expected frequency of key[i]. When
determining the cost of a search tree, it is necessary to sum the cost of
each subtree together with an additional amount that represents the cost
of adding 1 more comparison for the elements in the subtrees and the root
(that is what is calculated in node_cost in the code).

TREE-COMPUTE(key, freq)

1. n < length[key]

2. fori+1ton
3. do CJi, 1] < freqli]

4. fori+—1ton+1

5. doCli,i—1+0

6. for/ < 1ton—1

7. do for i <1 ton—1I

8. doj+i+!

9. node_cost < 0

10. for k< itoj

11. do node_cost + node_cost + freq|k]
12. Cli, j] ¢ o0

13. for k< i toj

14. do cost - C[i,k — 1]+ C[k + 1, j] + node_cost
15. if cost < C[i, j]

16. then C[i, j] < cost

17. rootli, j] < k

18. return C and root

Answer questions concerning this code segment below. (20 points total)

(a) What does Ci, j] represent in the above code? (3 points)

(b) What is an expression denoting the cost of the optimal binary search
tree over all of the n keys? (2 points)

(c) What does root|i, j] represent in the above code? (2 points)

(d) What are the space requirements of the above program. Explain. (3
points)

(e) Analyze the running time of the above algorithm using summations
which you evaluate. (5 points)

(f) Can we extract the optimal binary search tree based on information
computed by the above code? If so, explain how. If not, explain what
needs to be added. (5 points)

10

4. Single-source shortest path with vertex costs. Let G(V, E) be a weighted
directed graph, where w(u,v) is the cost of the edge from vertex u to v.
All edges in G have non-negative cost, i.e. w(u,v) > 0 for all w, v. In
many real life scenarios (computer networks, time for a plane flight), the
cost of a path P is equal to the sum of the edge costs of P plus a fixed
cost C, for each intermediate vertex in P. Thus, the cost of the path
(vo, v1, - . -, k) is w(vo, v1) +w(vi, v2) + -+ - + w(vg—1,vx) + (k — 1) x C, as

shown below.
c,

\
\
\
\
@ \
\
;7777;-»@

Throughout this problem, assume d[v] represent the shortest known dis-
tance so far from the source vertex s to vertex v. Let S be the set of
vertices to which we have found the shortest paths and let u be the last
vertex added to S.

(20 points total)

(a) Show how to modify Dijkstra’s algorithm to find the shortest path
from a source vertex to all other vertices in V' according to the above
cost definition. Give high-level pseudo code. (10 points)

11

(b) Prove your algorithm produces the correct result. To prove the cor-
rectness you need to show that for each u € V, d[u] = 0(s, u) at the
time w is inserted into S, and that the equality is maintained there-
after, with 0(s,u) modified to include the intermediate node costs.
(10 points)

12

5. The following questions concerns KING ARTHUR’S PROBLEM (KAP),
which is defined as follows:

INSTANCE: n knights and a list of pairs of knights that are enemies
(note that if a is an enemy of b, then b is an enemy of a).

QUESTION: Is it possible to arrange the knights around a round table
such that no pair of knights who are enemies sit side by side? (Note that
the table is filled by all of the knights with each knight seated next to
two individuals in a circle.) (20 points total)

(a) Show that KING ARTHUR’S PROBLEM is in NP.

(b) Show that KING ARTHUR’S PROBLEM (KAP) is NP-hard by
HAMILTONIAN CIRCUIT PROBLEM « KAP. (10 points)

13

(c) Suppose that you later discover that KING ARTHUR’S PROB-
LEM is a member of P. What can you conclude about the relationship
between P and NP? Explain. (5 points)

14

