EE608: Final Exam

1. Consider the following two questions about the computational complexity of an algorithm. (8
points total)

(a) If the best-case running time of an algorithm FOO-BAR is ©(n?), what can be said about
the average-case and worst-case running time of FO0-BAR? Explain. (4 points)

Since the average-case and worst-case running time of FOO-BAR will be larger than equal
to the best-case running time, we can say that the average-case and worst-case running
time is (n®). Nothing else can be said.

(b) If the worst-case running time of BAR-FOO is (27), what can be said about the best-case
and average-case running time of BAR-FOO? Explain. (4 points)

The worst-case running time of BAR-FOO can be anything that is in Q(2"). Since the
best-case and average-case running time can be the same as or faster than the worst-case
running time, the best-case and average-case running time of BAR-FOO could be anything.

2. Solve the following recurrences using Master Theorem or explain why Master Theorem can’t
be used. Provide all necessary details. (12 points total)

(a) T(n) =3T(%)+n* - (4 points)

This recurrence can be solved by using case 3 of the Master Theorem since a = 3,b = 3,
and f(n) = n?, it follows that n? = Q(n'9:3+¢) for some € > 0 and 3((n/3)?) < ¢(n?) for
some ¢ < 1, say ¢ = 1. Thus, T'(n) = O(n?).

(b) T(n) =T(%) +sinn (4 points)

Since f(n) = sin(n), it ranges between [~1, 1]. Hence, f(n) is not asymptotically positive
and so this recurrence cannot be solved by using Master Theorem.

(c) T(n)=4T(%)+1 (4 points)

This recurrence can be solved by using case 1 of the Master Theorem since 1 = O(n/¢934=¢)
for some € > 0. Thus, T(n) = O(nlo94),

3. Provide a summation expressing for how many times statement 4 is executed in the following
code segment. It may help you to consider how often the inner loop iterates for each 7 value
given a small value for n. You do not need to solve the summation in closed form, but you
may want to verify that your summation is correct by considering small cases. Give analysis
details if you expect partial credit. (12 points)

l.fori+1ton
2 do j+ 1

3. while j < n
4 doj« j+4



Let n = 10. Then, when ¢ = 1, the line 4 executed 3 times when j = 1, 5,9 and the while loop
terminates when j = 13. When i = 2, the line 4 executed 2 times when j = 2,6 and the while
loop terminates when j = 10. When 1 = 3, the line 4 executed 3 times when 5 = 3,7 and the
while loop terminates when 7 = 11. When ¢ = 4, the line 4 executed 2 times when j = 4, 8 and
the while loop terminates when j = 12. When ¢ = 5, the line 4 executed 2 times when j = 5,9
and the while loop terminates when j = 13. When ¢ = 6, the line 4 executed 1 time when
J = 6 and the while loop terminates when 7 = 10. When ¢ = 7, the line 4 executed 1 time
when j = 7 and the while loop terminates when j = 11. When ¢ = 8, the line 4 executed 1
time when § = 8 and the while loop terminates when j = 12. When ¢ = 9, the line 4 executed
1 time when j = 9 and the while loop terminates when j = 13. When ¢ = 10, the line 4 is not
executed because the while loop terminates when j = 10.

From this simple example, we can see that when 7 = &, the inner loop executes [%], so Line

4 is executed » [25].

i=1

. Consider the following questions about sorting. (8 points total)

(a) If the first line of RADIX-SORT is changed to for i + d down to 1, will the algorithm
still be correct? Explain. (5 points)

The algorithm will not be correct. Consider a simple example, A = (13,31). The above
approach will yield (31, 13) as the sorted output, which is not correct.

(b) Give the main reason why a person would prefer to use RANDOMIZED-QUICKSORT instead
of QUICKSORT. What is the worst-case running time of RANDOMIZED-QUICKSORT? (3
points)

We use RANDOMIZED-QUICKSORT to prevent specific inputs from eliciting the worst-case
running time for QUICKSORT. The worst-case running time for the randomized version is
O(n?), just as for QUICKSORT.

. Design an algorithm FIND-PAIR(S, Z) that has an O(n) average-case running time to determine
whether there exists a pair of distinct numbers z,y € S, where S is a dynamic set of n integers
and Z is a number, such that # +y = Z. The algorithm should return the first z, y pair found
such that x4y = Z, or NIL if no such z,y pair exists in S. You may assume all of the numbers
in S are distinct (i.e., no duplicates). Show that you meet the time bound. Half credit will be
given for less efficient solutions. (14 points)

(a) Store all n elements of S in a chained hash table of size n, T

(b) For each & € 5, call CHAINED-HASH-SEARCH(T, Z — z). Since there are no dupli-
cates, when Z — & = z, we should not look for a value in the table; simply continue with
another value in the set. If CHAINED-HASH-SEARCH(T, Z — z) returns with a value
other than NIL, return z, Z — 2. If a call for a particular z returns N1L, we continue with
the next value of z. Search continues until a pair is located or until all of the elements of
S have been tried, in which case NIL is returned.



The time to store the elements of S in T'is ©(n). If there is no &, Z — = pair, then n searches
are required, each taking O(1) time on average. Hence, this step will take at most O(n) time
on average. Hence, the expected time is at most O(n).

6. Consider a variant of the MATRIX-CHAIN-ORDER multiplication problem in which the goal is to
parenthesize the sequence of matrices in order to maximize the number of scalar multiplica-
tions. Does this problem exhibit the optimal substructure property? If so prove it, if not give
a specific counter-example. (13 points)

When multiplying together two matrices, the number of scalar multiplications is based on the
number of rows and columns of the first and the number of columns of the second (where the
row dimension of the second must be equal to the column dimension of the first). If we wish
to optimize so that we maximize the number of scalar multiplications, then the problem still
exhibits the optimal substructure property. To see that this is so, assume you are given an
optimal parenthesization of A4; ;, i.e., 4; X A;41 X...x A; that is comprised of two subproblems
A; i and Agyy ;. For A;; to be optimal, it must be the case that A;; and Agyy; are optimal
solutions to subproblems. Suppose that there is another solution @ #ith more scalar

multiplications than A;;, then this would contradict the optimality of AZ-:]- since the number

of scalar multiplications resulting from multiplying the two resulting matrices is fixed, so the

alternative solution A}, would yield a solution with more scalar multiplications than A; ;.

. Prove or disprove that any Minimal Spanning Tree (MST) for a weighted undirected connected
graph G = (V, F) containing at least three vertices must contain the second smallest edge. You
may assume that all edge weights are distinct. (13 points)

We prove the second smallest edge e must be in any MST using proof-by-contradiction. Assume
that there is an MST T which does not contain e. Adding e to T creates a cycle p. The
maximum weight edge in p, call it ¢/ must be such that w(e’) > w(e) because the cycle must
contain at least three edges, only one of which can be smaller than e. We can break the cycle
by removing e’ to create T” such that w(7") = w(T) — w(€') + w(e) < w(t), contradicting our
assumption that 7" was an MST. Hence, any MST must contain the second smallest edge.

. List all of the T() matrices (for ¢ = 0 up to i = 4) that are created by the TRANSITIVE-
CLOSURE algorithm applied to the graph below. (5 points)

700) —

1
0
1
1

S O = e
[ S Sy
O O O



1 11 0

= 11 10
1 1 11

11 10

T 1110
1 1 11
1110

@_| 1110
= 11 10
1 1 11

1 110
{1110

1 1 11

9. Consider the following variation of FLOYD-WARSHALL, called FLOYD-WARSHALL-
ALT. (15 points)

FLOYD-WARSHALL-ALT (W)
1. n + rows[W]

2. D~ W
3.fork+—1ton

4, do fori+ 1lton
5 doforj«lton

6. dij — mm(d”, dir + dkj)
7. return D

(a) What are the space requirements of FLOYD-WARSHALL-ALT? How does it compare
to FLOYD-WARSHALL? (5 points)

This algorithm requires ©(n?) space compared to ©(n®) used by the original algorithm.

(b) Is FLOYD-WARSHALL-ALT correct? In other words, does FLLOYD-WARSHALL-
ALT return the same result as FLOYD-WARSHALL? Justify your answer thoroughly.
(10 points)

FLOYD-WARSHALL-ALT calculates the value for d;; for iteration & by looking up the
values of d;;, d, and dy; from the D matrix as computed during iteration £—1. It must be
the case that d;; is unchanged at any other time during the iteration because the algorithm

4



only sets the value after looking up the previous value, and d;; and di; cannot be changed
by introducing k£ as an intermediate vertex (unless there is a negative weight cycle, in
which case both D and D" are invalid); hence, these values are available from the prior
iteration. Neither algorithm detects negative weight cycles, and so both would require the
same modification to handle that case. In all other cases, FLOYD-WARSHALL-ALT

is correct.

10. Show that the Set Cover (SC), which is described below, is NP-complete given that Vertex
Cover (VC) (also described below) is a known NP-complete problem. (20 points).

Set Cover (SC)
INSTANCE: A family of sets S, 59, ...,5, and an arbitrary positive integer £ < n.

QUESTION: Is there a subfamily of k£ sets from the original family of sets, S;,,.S,,..., 95,

such that: .
Usi, =USs;

J=1 i=1

Vertex Cover ( V()
INSTANCE: An undirected graph G = (V, F) and an arbitrary positive integer K < |V|.

QUESTION: Is there a vertex cover of size K or less for G, i.e., a subset V/ C V such that
[V'| < K and for each edge (u,v) € F, at least one of u and v is in V'?

Given an instance of SC, the number of sets in the solution can be counted in linear time to
ensure that it is less than or equal to k. It is also easy to verify that each set in the subfamily
appears in the original family of sets in polynomial time. Finally, the solution family of sets
and the original family of sets can be unioned in polynomial time (e.g., O(nlgn) worst case
time to sort each list and merge removing duplicates) and the resulting sets checked for set
equality (in O(n) worst case time). Hence, SC is in NP.

We will show that VC « SC. For any VC instance with an undirected graph G = (V, E)
and a value K, construct an SC instance as follows: for 1 <1 < |V/, let S; be the set of all
edges incident upon v;, and let £ = K. Clearly, this requires only O(V + F) time when G is
represented using an adjacency list. Also, if there is a VC' of size k = K v;,,viy, ..., v, then
clearly the union of the sets 5;,,5;,,...,5;, gives precisely the edges of the union of the sets
51,852, ...,5y. Furthermore, if there is an SC S;,,5;,,..., 5, with & = K, then a V( exists
for & with size k = K, namely v;;,vi,,...,v;,.



