
ECE608 Midterm 2 Spring 2007

Please fill in the following information.

THEN PUT YOUR EMAIL ADDRESS ON EVERY PAGE OF THE EXAM !

 NAME: SOULTION

 Email (please put complete address):

Neatness counts. We will not grade what we cannot read.

Exam is worth 100 points. Please phrase your answer succinctly. Write your answer on
the same page, on which the question is given. There are five questions and a total of nine
pages. Make sure you turn in all these pages.

Do not attempt to look at other students' work. Keep your answers to yourself.
Any sort of cheating will result in a zero grade.

Read and sign the statement below. Wait for instructions to start the examination before
continuing to the next page.

"I signify that the work shown in this examination booklet is my own and that I have not
received any assistance from other students nor given any assistance to other students."

_________________________________(Signature)

 1

 ECE608 Midterm 2 email :

Q1. Binary Search Tree (16 points total)

We can sort a given set of n numbers by constructing a binary search tree containing
those numbers by using TREE-INSERT on the list of numbers and then performing
INORDER-TREE-WALK on the resulting tree. Answer the following questions
concerning the running time of this sorting algorithm.

(a) What is the worst-case running time for performing a sort in this manner? Identify

at least one situation that would produce this result. Analyze the worst-case
running time precisely using either a recurrence or summation, solving it in
closed-form using Θ-notation. (8 points)

(b) What is the best-case running time for performing a sort in this manner?
Identify at least one situation that would produce this result. Analyze the
time precisely using either a recurrence or summation, solving it in closed-
form using Θ-notation. (8 points)

Solution:

(a) The worst-case running time occurs when the list of elements to be inserted in the tree
are already sorted in increasing (or decreasing) order. In this case, each element will be
inserted into a linear list after being compared to all of the elements that have already
been inserted. The first element can be inserted with no comparisons, the second with 1,
the third with 2,…, the ith with i – 1,…, and the nth with n-1 comparisons; hence, the

time to insert the ith elements is i – 1 + 1 = I, giving i =
(n +1)n

2
= Θ(n2

i=1

n

∑) worst-case

time. Note that because the time to perform the inorder tree walk is Θ , the overall
worst-case time is .

(n)
Θ(n2)

(b)The best case occurs when the order of the numbers in the set results in a balanced
binary search tree. In this case, the first element will be compared to no others, the left
and right child will have one comparison to the root, their children will have two
comparisons, etc. For i , ≥ 1 ith element inserted will be compared to lg i elements for
its insertion, giving a time to insert of

lg i
i=1

n

∑ +1) ≤ (lg i +1) ≤ 2 lg i = 2lg(i) = 2 lg(n!) = O(n lgn)
i=1

n

∏
i=1

n

∑
i=1

n

∑ .

Also, (lg
i=1

n

∑ i +1) ≥ ((lg i −1)+1) = lg i = lg(n!) = Ω(n lgn)
i=1

n

∑
i=1

n

∑ . Note that because of

this and the time to perform the inorder tree walk is Θ(n) , the overall best-case time is
, Θ(n lg n)

 2

ECE608 Midterm 2 email :

Q2. Binary Search Tree (19 points total)

(a) Draw the binary search tree that results from inserting the following keys into an

initially empty tree, in the order given: 25, 18, 17, 29, 52, 75, 65, 33, 11, 13. (8
points)

(b) Give two permutations of the above keys (in Part c) that will result in a maximal

height binary search tree. Is there a third permutation? If so, give it. If not,
explain why not. (11 points)

Solution:

(a):

 25

 18 29

 17 52

11 33 75

 13 65

(b):

11 13, 17, 18, 25, 29, 33, 52, 65, 75
75, 65, 52, 33, 29, 25, 18, 17, 13, 11

There are others; simply delete the parent of an only child which is a leaf and then
reinsert the deleted node.

11, 13, 17, 18, 25, 29, 33, 52, 65, 75
75, 65, 52, 33, 29, 25, 18, 17, 11, 13

 3

ECE608 Midterm 2 email :

Q3. Hashing (total points 15)
Suppose n records are stored in a hash table of size m with m > n using chaining, and
suppose that a good hash function is used so that the probability that a key is hashed into
any of the m slots is 1/m

i. For a particular slot in the chained hash table, what is probability that the slot
is empty? (7 points)

(1−
1
m

)n

ii. If open addressing were used instead of chaining, what would the probability
be that a certain slot is empty? (8 points)

(1−
1

m − i
) =

i=0

n−1

∏ (
m − i −1)

m − i
) =

m − n
m

= 1−
n
mi=0

n−1

∏

 4

ECE608 Midterm 2 email :

Q 4. Hashing (20 points total)

Consider a hash table of size 7. For this table, assume that the quadratic probing
based on the following rehash function

 (k+j2) mod 7

is used where k is the original hash value of an input key and j = 0, 1,2,3,4,….

(a) (2 points). Write down a four-element input sequence x1, x2, x3, x4
 (where 0 < = xi < = 6) such that no collision occurs and the hash values map into
the pattern of occupied (shaded) cells shown below (indices 1, 2, 4, and 6).

0 1 2 3 4 5 6

Elements

Index

1, 2, 4, 6

(b) (6 points) List one more sequence of four elements x1, x2, x3, x4 (where 0 < =
xi < = 6) that maps into the shaded indices of part (a) and is not a permutation of
the sequence that you have found in part (a). The total number of collisions in this
new sequence should as minimum as possible. Provide the total number of
collisions for this sequence.

#collisions = 1

1 4 6 1

 5

ECE608 Midterm 2 email :

(c) (12 points). Consider a table of size 13 where insertion of a key (k) is carried
out using a double hashing, h(k,i) = (h1(k) + i h2(k)) mod 13, where i = 0, 1, 2, …,
12, with h1(k) = k mod 13 and h2(k) = 1 + (k mod 11).

Write an ordered sequence of input keys stored in this table that results in the
mapping as shown below. Give your reasoning for full credit.

 92 82 111 85 27 63
0 1 2 3 4 5 6 7 8 9 10 11 12

Elements

Index

No sequence exists.
92, 82, 85, and 63 can come in any order. 111 and 27 cannot be mapped at the
locations shown in figure. 111 can be re-mapped to location 9 after colliding with
85. Similarly, 27 can be re-mapped to location 7, after colliding with 92.

 6

ECE608 Midterm 2 email :

Q5. Dynamic Programming and Greedy Algorithms (30 points total)
Given n intervals Ii = [si, fi], i = 1, . . . ,n, on the real line, we want to determine points p1 ,
p2 , . . . pk such that for each i there is some j with pj∈ Ii , and such that k is as small as
possible.

(a) Consider the following greedy strategy: Choose a point that covers the largest
number of intervals, remove those intervals from further consideration and iterate. Show
that this strategy does not result in an optimal solution. (8 points)

Solution (a): In the example in the figure (left) below, this greedy strategy would choose
three points: first a that covers four intervals, and then b and c, each covering a
remaining uncovered interval. The optimal solution (right), in contrast, needs only two
points to cover all intervals.

b a c a b

(b) Propose another greedy strategy that produces an optimal solution. Prove that your
greedy algorithm it is correct (14 points). The resulting algorithm should be as efficient
as possible. Give the computational complexity of your algorithm (8 points)

Solution: Order the intervals according to their right endpoint. When the next interval

 is considered, add its right endpoint to the set of covering points and remove
from the set of intervals those that are covered by . To be more precise, we offer an
efficient implementation. For simplicity, we assume that the interval endpoints are all
different (we’ll note how to take care of the case when some are equal).

[si , fi] fi

fi

MININTCOVER((si , fi) : i = 1,…,n
 sort the si and fi in increasing order into a single list
 of points x1, x2 ,..., x2n−1, x2n

{1, 2,3,..., 1, }; ;I n n P L← − ←∅ ←∅
for j = 1 to 2n do
 if xj is sk for some k then
 L ← L ∪ {k}
 if xj is fk for some k and k ∈ I then
 { }kP P f← ∪
 I ← I − L
 L ←∅
 return P

 7

ECE608 Midterm 2 email :

The algorithm considers the interval endpoints from left to right, keeping a list L of active
intervals at each moment, namely, intervals that span [and are not yet covered by
a point in P, which maintains the set of covering points. I keeps the set of intervals not
yet covered.

x j−1, x j]

Correctness. Let denote the set P at the end of the j-th iteration. We verify by
induction that the set can be extended into an optimal covering set of points. The
basis of the induction is trivial. If P is not updated in an iteration, there is nothing to
prove. So, consider the moment in which the line

Pj

Pj

P ← P ∪ { fk } is executed (a point is
added to). By induction hypothesis, can be extended into an optimal set P .

But did not cover I

Pj−1 Pj−1 j−1
'

Pj−1 k, so must include a point Pj−1
' p ≤ fk . If p ≤ fk then

and we can substitute p with f

Pj
' = Pj−1

'

p < fk k in to obtain a solution that is an extension
of P

Pj−1
' Pj

'

j and is optimal: it is a solution because it still covers all the intervals, and it is
optimal because it has the same size.

Running Time. The time for sorting is O . All the other work performed takes
time (with proper implementation; for example I should be implemented as an
array). So the total time isO .

(n log n)
O(n)

(n log n)

 8

