
Midterm 1

ECE 608
February 26, 2004, 7-9pm Name: SOLUTION

Read all of the following information before starting the exam:

• NOTE: Unanswered questions are worth 30% credit, rounded down. Writing any
answer loses this “free” credit, which must be earned back by the quality of the
answer. If you wish a question to be treated as unanswered, but you have written
on it, clearly write “DO NOT GRADE” in the answer area. In a multi-part question,
unanswered parts are worth 30%.

• Show all work, clearly and in order, if you want to get full credit. I reserve the right
to take off points if I cannot see how you arrived at your answer (even if your final
answer is correct).

• No calculators, or materials other than pen/pencil and blank paper are allowed
except those we distribute during the exam.

• Please keep your written answers brief; be clear and to the point. Points will be
deducted for rambling and for incorrect or irrelevant statements.

• This test has 8 problems, each of which is approximately equal in value. Multi-part
problems divide the problem score approximately equally among the parts.

• Good luck!



1. Clearly describe a worst-case Θ(n lg n) algorithm for determining if an array
containing n distinct natural numbers has any entries x and y such that x = 2y. Argue
that your algorithm is indeed Θ(n lg n) worst case.

There are n elements in the array, and because each is a distinct natural number there are
no repeated keys in the array. Create a new array of size 2n and insert all elements of the
original array into it. Now for each element y in the original array, insert key x = 2y in
the new array. Thus we have filled all 2n elements of the new array. MERGE-SORT the
new array in 2n log 2n steps. Now scan the array in 2n steps and look for any repeated
keys. If a repeated key is found, then it must be the case that one of them must belongs
to the original array and one is from doubled elements. Thus we can find if such an x and
y from the original array exist for which x = 2y.



2. Specify three recurrences and solve them using the Master Theorem. Each
recurrence must use a different case of the theorem.

(1)
T (n) = 4T (n/2) + n

We have loga b = 2, and f(n) = n = O(n2). So by case 1 of the master theorem:

T (n) = Θ(n2)

(2)
T (n) = 2T (n/2) + n

We have loga b = 1, and f(n) = n = Θ(n). So by case 2 of the master theorem:

T (n) = Θ(n log n)

(3)
T (n) = 2T (n/2) + n2

We have loga b = 1, and f(n) = n2 = Ω(n). Also af(n/b) ≤ cf(n) is true for
1/4 ≤ c ≤ 1. So by case 3 of the master theorem:

T (n) = Θ(n2)



3.

a. Argue that no correct comparison sort can have a worst-case performance better
than O(n lg n).

See text, Theorem 8.1 on page 167.

b. Give a tight asymptotic bound on the best-case performance a comparison sort can
exhibit and explain.

Each element must be compared in order to determine its order relative to other
elements. To argue that n comparisons are needed, we can note that n-2 of the ele-
ments (those not largest or smallest) must each appear in two different comparisons
(one that they win and one that they lose). The remaining 2 elements each appear
in at least one comparison. This gives a total of at least n-1 comparisons, which is
in fact all that are needed in the best case.



4.

a. Give and prove asymptotic upper and lower bounds for
∑n

k=1 k4.

n∑

k=1

k4 ≤
n∑

k=1

n4 = O(n5)

and
n∑

k=1

k4 =
n/2∑

k=1

k4 +
n∑

k=n/2

k4 ≥
n/2∑

k=1

0 +
n∑

k=n/2

(n/2)4 = Ω(n5)

Combining the above two observations:

n∑

k=1

k4 = Θ(n5)

b. Exploit the cyclic properties of the sin function to define a function f(n) such that
f(n) is not O(g(n)) or Ω(g(n)) for any polynomial function g(n).

f(n) = 2n sin n

The exponential part of f(n) cannot be bounded by any polynomial g(n) so f(n)
is not O(g(n)). The sinusoidal part of f(n) causes the expeonential magnitude to
oscillate between positive and negative extremes. At the negative extreme f(n) will
be asymptotically smaller than any polynomial g(n) so f(n) is not Ω(g(n))) either.

This problem continued on the next page.



c. Give and prove asymptotic upper and lower bounds for T (n) = 2T (n/2) + n/ lg n.

See solution to homework #10 problem #3 (CLR 4-4 (e)).



5.

a. Describe where care must be taken in MergeSort to ensure that it is a stable sort.

During the merge operation, when the two keys being compared from the two sub-
arrays are equal we choose the key from the subarray that is lower indexed with
respect to the original array. This ensures that keys with same values remain in the
same relative order as they appeared in the original input array.

b. Clearly describe an in-place sorting algorithm that achieves an O(n) worst-case
sorting time by exploiting an assumption that keys are all natural numbers and
only k distinct keys appear. Here, k is a fixed constant that does not grow with n.

Create a new array of size k. Scan the given array in n steps to find out the k
different keys and store each one in the new k-sized array. Sort the k-sized array in
k log k = Θ(1) time. Say the elements of this sorted array are k1, k2...kk. Choose
k1 as pivot and run PARTITION on the given array. The pointers i and j meet at
a point where all lower elements in the array are k1. Frtom this point choose k2

as a new pivot and run PARTITION only on the remaining upper elements of the
array. Once again the pointers i and j meet at a point where the k1 and k2 are the
lower elements in sorted order. Repeat this process k times, each time forming a
new pivot and partitioning only the remaining protion of the array. Each invocation
of PARTITION takes n steps at most, and we run PARTITION k times. Thus the
running time of the algorithm is O(nk) = O(n) as k is a constant.



6. Suppose k balls are fired into n bins uniformly at random, independently. What
is the expected number of bins that have just 1 ball? Explain.

See solution to homework #3 problem #18 (CLR 5.4-6). Use k balls instead of n balls.



7. Consider the code below for BuildMaxHeap. Give a loop invariant for the for

loop and use it to prove the correctness of the algorithm.

BuildMaxHeap(A)
1. heap-size[A]← length[A]

2. for i← b length[A]
2

c downto 1
3. do MaxHeapify(A, i)

See text, page 133.



8. Consider the code below for BuildMaxHeap. Give and prove a tight asymptotic
bound on the worst-case run-time for one call. Assume that length[A] is n.

BuildMaxHeap(A)
1. heap-size[A]← length[A]

2. for i← b
length[A]

2
c downto 1

3. do MaxHeapify(A, i)

See text, page 133-135.


