Everywhere in what follows V will denote an arbitrary vector space. For each of the following questions specify if it is true or false (mark a) for true or b) or false).

1. If c is a real number and x, y, z are vectors in V such that either $x+z=y+z$ or $c \cdot x=c \cdot y$, then $x=y$.
a)
b)
2. $W=\left\{\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \in \mathbb{R}^{3} ; a_{2}=a_{1}+5\right\}$ is a subspace of \mathbb{R}^{3}.
a)
b)
3. Let W be a subset of V. Then W is a subspace of V iff it is nonempty and whenever $a \in \mathbb{R}$ and $x, y \in W$ we have $a \cdot x+y \in W$.
a)
b)
4. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called odd if $f(-x)=-f(x)$ for all x. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called even if $f(-x)=f(x)$ for all x. Let $\mathcal{F}(\mathbb{R})$ be the vector space $\{f ; f: \mathbb{R} \rightarrow \mathbb{R}\}$. Then $W=\{f ; f: \mathbb{R} \rightarrow \mathbb{R}, f$ odd or even $\}$ is a subspace of $\mathcal{F}(\mathbb{R})$.
a)
b)
5. Recall that if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $A^{t}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$. A matrix A is called skewsymmetric if $A^{t}=-A$. Then $W=\left\{A \in \mathcal{M}_{2}(\mathbb{R}) \mid A\right.$ skew-symmetric $\}$ is a subspace of dimension 1 of $\mathcal{M}_{2}(\mathbb{R})$.
a)
b)
6. Let S be a finite subset of V such that whenever $\vec{v}_{1}, \ldots, \vec{v}_{n} \in S$ and $a_{1} \vec{v}_{1}+\ldots+a_{n} \vec{v}_{n}=\overrightarrow{0}$, we have $a_{1}=\ldots=a_{n}=0$. Then every vector in $\operatorname{span}(S)$ can be uniquely written as a linear combination of vectors in S.
a)
b)
7. Let $V=\mathcal{P}(\mathbb{R})$. Then the polynomial $-x^{2}+2 x^{2}+3 x+3$ is in $\operatorname{span}\left\{x^{3}+x^{2}+x+1, x^{2}+\right.$ $x+1, x+1\}$
a)
b)
8. $\left.\underset{\text { does not. }}{\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right.},\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)\right\}$ spans \mathbb{R}^{3}, but $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}10 \\ 0 \\ 1\end{array}\right)\right\}$
a)
b)
9. $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)\right\}$ are linearly independent, but $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}10 \\ 0 \\ 1\end{array}\right)\right\}$ are not.
a)
b)
10. $\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}3 \\ 4 \\ -1\end{array}\right),\left(\begin{array}{c}9 \\ 13 \\ -1\end{array}\right)\right\}$ can be reduced to a basis for \mathbb{R}^{3}.
a)
b)
11. $\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right\}$ can be extended to a basis for \mathbb{R}^{3}.
a)
b)
12. Let $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}^{3}$ such that whenever $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+a_{3} \vec{v}_{3}=\overrightarrow{0}$ we have $a_{1}=a_{2}=a_{3}=0$. Then the $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\mathbb{R}^{3}$.
a)
b)
13. $\left\{1+x, 1+x-x^{2},-1+x+x^{3}, x^{2}+x, 1\right\}$ is linearly independent in $\mathcal{P}_{3}\left(\mathbb{R}^{3}\right)$.
a)
b)
14. If $\{\vec{u}, \vec{v}\}$ is a basis for V, then $\{\vec{u}+\vec{v}, 3 \vec{u}\}$ is a also a basis for V.
a)
b)
15. A basis for $W=\left\{\left(\begin{array}{c}a \\ a-b \\ b\end{array}\right) ; a, b \in \mathbb{R}\right\}$ is $\left\{\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ -4 \\ 4\end{array}\right)\right\}$.
a)
b)
16. Let $\mathcal{P}_{2}(\mathbb{R})$ be the vector space of all polynomials of degree less or equal to 2 . Then $W=\left\{f \in \mathcal{P}_{2}(\mathbb{R}) \mid f(3)=0\right\}$ is a subspace of dimension 2 of $\mathcal{P}_{2}(\mathbb{R})$.
a)
b)
17. Let W_{1}, W_{2} be subspaces of V such that $V=W_{1} \oplus W_{2}$. Then $\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+$ $\operatorname{dim}\left(W_{2}\right)$.
a)
b)
18. If $\operatorname{dim}(V)=1$, any generating set of V containing strictly more than n vectors can be reduced to a basis of V.
a)
b)
19. If $\operatorname{dim}(V)=1$, any n linearly independent vectors will span V.
a)
b)
20. Let $W=\left\{\left(\begin{array}{l}a \\ a-b \\ b\end{array}\right), a, b \in \mathbb{R}\right\}$. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Then $\left\{v \in \mathbb{R}^{4}, T(v) \in W\right\}$ is a subspace of \mathbb{R}^{4}.
a)
b)
21. Let T be the following linear transformation from $\mathcal{P}_{3}(\mathbb{R})$ to $\mathcal{P}_{2}(\mathbb{R}): T(f)=f^{\prime}$. Then T is both injective (one-to-one) and surjective (onto).
a)
b)
22. If $T: V \rightarrow W$ is a linear application, where V and W have finite and equal dimensions, then $\operatorname{Ker}(T)=\{0\}$ iff $\operatorname{Rank}(T)=\operatorname{dim}(W)$
a)
b)
23. If $T: V \rightarrow W$ is a linear application, where V and W are finite-dimensional and $\operatorname{dim}(V)<\operatorname{dim}(W)$, then T can not be surjective.
a)
b)
24. If $T: V \rightarrow W$ is a linear application, where V and W are finite-dimensional. Then $\operatorname{Rank}(T) \leq \operatorname{dim}(W)$, and $\operatorname{Rank}(T) \leq \operatorname{dim}(V)$.
a)
b)
25. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Then T is injective iff T is surjective iff $\operatorname{Rank}(T)=3$.
a)
b)
26. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection wrt the x-axis: $T(a, b)=(a,-b)$, then $\operatorname{Ker}(T)=$ $\{(0,0)\}$.
a)
b)
27. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the following linear transformation $T(a, b)=(a, 0, b)$, then $\operatorname{Im}(T)$ is the $x y$-plane in \mathbb{R}^{3}.
a)
b)
28. The above linear application T is surjective.
a)
b)
29. The matrix of the above inear application T in the canonical basis of \mathbb{R}^{2} and respectively \mathbb{R}^{3} is

$$
[T]_{\alpha}^{\beta}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)
$$

a)
b)
30. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the following linear transformation $T(a, b, c)=(a, 0,0)$. Then $\operatorname{Ker}(T)=\{(0, b, c), b, c \in \mathbb{R}\}$.
a)
b)

