Feb. 17, 2015

Everywhere in what follows V will denote an arbitrary vector space. For each of the following questions specify if it is true or false (mark a) for true or b) or false).

1. If c is a real number and x, y, z are vectors in V such that either x + z = y + z or $c \cdot x = c \cdot y$, then x = y.

a) b)
2.
$$W = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^3; a_2 = a_1 + 5 \right\}$$
 is a subspace of \mathbb{R}^3 .
a) b)

- 3. Let W be a subset of V. Then W is a subspace of V iff it is nonempty and whenever $a \in \mathbb{R}$ and $x, y \in W$ we have $a \cdot x + y \in W$.
 - a) b)
- 4. A function $f : \mathbb{R} \to \mathbb{R}$ is called odd if f(-x) = -f(x) for all x. A function $f : \mathbb{R} \to \mathbb{R}$ is called even if f(-x) = f(x) for all x. Let $\mathcal{F}(\mathbb{R})$ be the vector space $\{f; f : \mathbb{R} \to \mathbb{R}\}$. Then $W = \{f; f : \mathbb{R} \to \mathbb{R}, f \text{ odd or even}\}$ is a subspace of $\mathcal{F}(\mathbb{R})$.

b)

- 5. Recall that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. A matrix A is called skew-symmetric if $A^t = -A$. Then $W = \{A \in \mathcal{M}_2(\mathbb{R}) | A \text{ skew-symmetric}\}$ is a subspace of dimension 1 of $\mathcal{M}_2(\mathbb{R})$.
 - a) b)
- 6. Let S be a finite subset of V such that whenever $\vec{v}_1, \ldots, \vec{v}_n \in S$ and $a_1\vec{v}_1 + \ldots + a_n\vec{v}_n = \vec{0}$, we have $a_1 = \ldots = a_n = 0$. Then every vector in span(S) can be uniquely written as a linear combination of vectors in S.
 - a) b)
- 7. Let $V = \mathcal{P}(\mathbb{R})$. Then the polynomial $-x^2 + 2x^2 + 3x + 3$ is in span $\{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}$
 - a) b)

8.
$$\left\{ \begin{pmatrix} 1\\0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1 \end{pmatrix}, \begin{pmatrix} 0\\0\\2 \end{pmatrix} \right\} \text{ spans } \mathbb{R}^3, \text{ but } \left\{ \begin{pmatrix} 1\\0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1\\0 \end{pmatrix}, \begin{pmatrix} 10\\0\\2\\2 \end{pmatrix}, \begin{pmatrix} 10\\0\\1\\1 \end{pmatrix} \right\}$$
a) b)
9.
$$\left\{ \begin{pmatrix} 1\\0\\1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1\\0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\2\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1\\0 \end{pmatrix} \right\} \text{ are linearly independent, but } \left\{ \begin{pmatrix} 1\\0\\1\\0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1\\0\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\2\\0\\1\\0\\1 \end{pmatrix} \right\} \text{ are not.}$$
a) b)
10.
$$\left\{ \begin{pmatrix} 1\\1\\-1\\0\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 9\\13\\-1\\0 \end{pmatrix} \right\} \text{ can be reduced to a basis for } \mathbb{R}^3.$$
a) b)
11.
$$\left\{ \begin{pmatrix} 1\\1\\-1\\0\\1 \end{pmatrix} \right\} \text{ can be extended to a basis for } \mathbb{R}^3.$$

12. Let $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$ such that whenever $a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3 = \vec{0}$ we have $a_1 = a_2 = a_3 = 0$. Then the span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} = \mathbb{R}^3$.

13. $\{1+x, 1+x-x^2, -1+x+x^3, x^2+x, 1\}$ is linearly independent in $\mathcal{P}_3(\mathbb{R}^3)$.

b)

14. If $\{\vec{u}, \vec{v}\}$ is a basis for V, then $\{\vec{u} + \vec{v}, 3\vec{u}\}$ is a also a basis for V.

a) b)
15. A basis for
$$W = \left\{ \left(\begin{array}{c} a \\ a - b \\ b \end{array} \right); a, b \in \mathbb{R} \right\}$$
 is $\left\{ \left(\begin{array}{c} 2 \\ 2 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ -4 \\ 4 \end{array} \right) \right\}$.
a) b)

- 16. Let $\mathcal{P}_2(\mathbb{R})$ be the vector space of all polynomials of degree less or equal to 2. Then $W = \{f \in \mathcal{P}_2(\mathbb{R}) | f(3) = 0\}$ is a subspace of dimension 2 of $\mathcal{P}_2(\mathbb{R})$.
 - a) b)

- 17. Let W_1, W_2 be subspaces of V such that $V = W_1 \oplus W_2$. Then $\dim(V) = \dim(W_1) + \dim(W_2)$.
 - a) b)
- 18. If $\dim(V)=1$, any generating set of V containing strictly more than n vectors can be reduced to a basis of V.

a) b)

- 19. If $\dim(V)=1$, any *n* linearly independent vectors will span *V*.
- a) b) 20. Let $W = \left\{ \begin{pmatrix} a \\ a-b \\ b \end{pmatrix}, a, b \in \mathbb{R} \right\}$. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation. Then $\{v \in \mathbb{R}^4, T(v) \in W\}$ is a subspace of \mathbb{R}^4 . a) b)
- 21. Let T be the following linear transformation from $\mathcal{P}_3(\mathbb{R})$ to $\mathcal{P}_2(\mathbb{R})$: T(f) = f'. Then T is both injective (one-to-one) and surjective (onto).

a) b)

22. If $T: V \to W$ is a linear application, where V and W have finite and equal dimensions, then $\text{Ker}(T) = \{0\}$ iff Rank $(T) = \dim(W)$

a) b)

- 23. If $T: V \to W$ is a linear application, where V and W are finite-dimensional and $\dim(V) < \dim(W)$, then T can not be surjective.
 - a) b)
- 24. If $T: V \to W$ is a linear application, where V and W are finite-dimensional. Then $\operatorname{Rank}(T) \leq \dim(W)$, and $\operatorname{Rank}(T) \leq \dim(V)$.

a) b)

- 25. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Then T is injective iff T is surjective iff $\operatorname{Rank}(T) = 3$.
 - a) b)

- 26. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection wrt the x-axis: T(a, b) = (a, -b), then $\text{Ker}(T) = \{(0, 0)\}$.
 - a) b)
- 27. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the following linear transformation T(a, b) = (a, 0, b), then Im (T) is the *xy*-plane in \mathbb{R}^3 .

a) b)

- 28. The above linear application T is surjective.
 - a) b)
- 29. The matrix of the above inear application T in the canonical basis of \mathbb{R}^2 and respectively \mathbb{R}^3 is

$$[T]^{\beta}_{\alpha} = \left(\begin{array}{cc} 1 & 0\\ 0 & 0\\ 0 & 1 \end{array}\right)$$

a) b)

30. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the following linear transformation T(a, b, c) = (a, 0, 0). Then $\operatorname{Ker}(T) = \{(0, b, c), b, c \in \mathbb{R}\}.$

a) b)