Exam 1 MA353 - 12.30 Section October 5, 2015

Part 1.

- 1. Let T: $P_3(R) \rightarrow P_2(R)$, T(f)=f' (T is the derivation).
- a. Find Im(T) and dim(Im(T)).
- b. Apply the Dimension Theorem to find dim(Ker(T)).
- c. Ker(T)=? (Describe Ker(T)).
- 2. Let T: $P_2(R) \rightarrow R$, T(f)=f(2). Let α and β be the canonical bases of $P_2(R)$ and R respectively.
 - a. Compute $[T]_{\alpha}^{\beta}$.
 - b. Using the definition of T find $[T(2-3x+5x^2)]_{\beta}$.
 - c. Using Th. 2.14 ($[T(v)]_{\beta} = [T]_{\alpha}^{\beta}[v]_{\alpha}$) find $[T(2-3x+5x^2)]_{\beta}$ and compare to what you obtained at h
- 3. Suppose the linear application T: $V \rightarrow W$ is injective (one-to-one). Let S be a subset of V. Prove that S is linearly independent in V iff T(S) is linearly independent in W.
 - 4. Let T: $R^3 \rightarrow R$ be a linear application.
 - a. Prove that there exist three real numbers a,b,c such that T(x,y,z)=ax+by+cz.
 - b. What are the possible dimensions of Im(T)? Why?
 - c. For each of these possible dimensions of Im(T), how much is the corresponding dimension of Ker(T)?
 - d. Can T be injective? Why?
 - 5. Give an example of linear transformation T: $R^2 \rightarrow R^2$ for which Ker(T)=Im(T).

Part 2: True-False Questions.

- 6. $[T(v)]_{\beta}$ = $\{T\}_{\alpha}^{\beta}[v]_{\beta}$ for all vectors v in V, where $T: V \rightarrow V$ is a linear transformation and α and β are bases in V.
 - a. True b. False

7. $L(V,W)$ is isomorphic to $M_{mxn}(R)$, where $L(V,W)$ is the space of all linear transformations from V to W and m represents the dim(V), n represents the dim(W).
a. True b. False
8. Let T: $P_3(R) \rightarrow P_2(R)$, T(f)=f' (the derivation). If S is a basis in $P_3(R)$, then T(S) is a basis in $P_2(R)$.
a. True b. False
9. If V is the direct sum of the subspaces W_1 and W_2 , then every vector v in V can be uniquely written as u+w, with u in W_1 and w in W_2 .
a. True b. False
10. The spaces L(V, W), where dim(V)=dim(W)=2, and R ⁴ are isomorphic.
11. Let T, U be two different elements of $L(V,W)$ and β a basis in V. Then there exists a vector v in β such that $T(v)$ is different from $U(v)$.
a. True b. False
12. Let V and W be vector spaces, $\{v_1, v_2,, v_n\}$ a basis in V and $\{w_1, w_2,, w_m\}$ vectors in W. Assume m>n. Then there exists a linear transformation T: V \rightarrow W such that $T(\{v_1, v_2,, v_n\})$ is a subset of $\{w_1, w_2,, w_m\}$.
a. True b. False
13. If $[T]_{\alpha}^{\beta}$, the matrix of T in the bases α and β , is invertible, then $Ker(T)=\{0_{V}\}$.
a. True b. False

14. There exists a linear transformation T: $P(R) \rightarrow P_2(R)$ which is different from the zero

transformation (P(R)) is the space of all polynomials with real coefficients).

- a. True b. False
- 15. Let T, U : V \to V be two linear transformation and α , β two bases in V. Then $[TU]_{\alpha}=[T]_{\alpha}{}^{\beta}[U]_{\alpha}{}^{\beta}$.
 - a. True b. False

Part 3.

16. Prove that for any linear transformation T: $V \rightarrow W$, $Im(T) = SpanT(\beta)$, where β is a given basis in V.