Closed book and notes. 60 minutes.

20 ets

True or false. (for each, 2 points if correct, 1 point if left blank.)

total

The binomial distribution is a special case of the multinomial distribution.

2 pts.

The normal density function has only one shape.

- The exponential distribution is a special case of the normal distribution.
- For a fixed probability of success, the normal approximation to the binomial distribution is best when the number of trials is large.
- If Poisson occurrences have rate λ, then the average time between occurrences is also \(\lambda\).
- $\Gamma(4) = 4!$
- When using the normal distribution to approximate the binomial example of the continuity distribution. correction $P(3 \le X \le 6) = P(2.5 \le X \le 6.5).$
- Knowing the marginal distributions of X and Y is sufficient information to compute the joint distribution of (X, Y).
- (1) (T) F The exponential distribution is the special case of the gamma distribution with shape parameter r = 1.
- The exponential distribution is the special case of the Weibull distribution with shape parameter $\beta = 1$.

to pts 2. The pth quantile of the standard normal distribution is the constant zp that satisfies $P(Z \le z_p) = p$, where X is normally distributed with a mean of zero and variance of one.

(a) Circle the answer closest to the true value of z_{0.08}.

-2 -1 0 1 (2)

Spts.

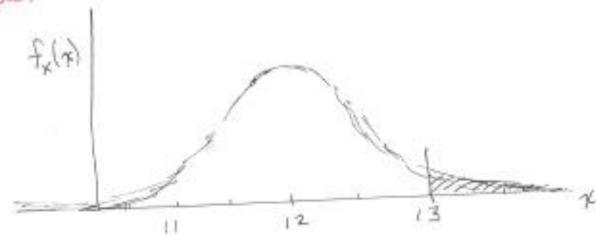
(b) Recall that the normal density is symmetric. Circle the true statement.

$$z_p = 2 z_{p/2}$$

15 pts. toba

3. (From Montgomery and Runger, 5.53.) Assume that the weight, X, of a particular kind of running shoe is normally distributed with mean 12 ounces and standard deviation 0.5 ounce.

5 pts. (a) Sketch f_X . Label both axes. Scale the horizontal axis.



- (b) On the sketch show the probability that a randomly selected shoe weighs more See shaded area. than13 ounces.
- (c) If the standard deviation remains at 0.5 ounce, what must the mean weight µ be so that 99.9% of its shoes are less than 13 ounces. (Information: The standard normal quantile value is $z_{.999} = 3.09$.)

$$P(X < 13) = .999$$
 $\Rightarrow P(X < 13) = .999$
 $\Rightarrow P(X < 13 = .999) = .999$

My car has a 16-gallon gas tank. When I buy gasoline, I fill the tank completely.

Let X denote the gasoline-gauge reading when I fill the tank. I never run out of gasoline; the gauge reading when I fill up is uniform between 0 and 1/4.

Let Y denote my mileage (in miles per gallon) for a randomly selected tank of gasoline. Assume that the distribution of Y is gamma with mean 22 and standard deviation 3. Assume that X and Y are independent.

5 pts.

(a) Write the joint density function of (X, Y). (Include all values of x and y.)

$$f_{XY}(x,y) = f_X(x) f_Y(y)$$
 since X and Y are independent.
 $= (4) \frac{\lambda^r y^{r-1} e^{-\lambda y}}{\Gamma(r)}$ if $\begin{cases} 0 \le x \le \frac{1}{4} \\ 0 \le y \le 20 \end{cases}$ and you elsewhere $\frac{r/\lambda}{\Gamma(\lambda^2 = 3)} \Rightarrow$

5 pts.

(b) Suppose that, because of much highway driving, Y = 28.2. What is the conditional mean gauge reading, \$\mu_X (28.2-

Mx/28.2 = Mx because X and I are independent
$$= \frac{0+1/4}{2} = \frac{1}{8} \quad \text{because X is } U(0, 1/4).$$

Spts.

(c) Let M denote the number of miles driven on a (randomly selected) tank. Then M = 16(1-X)Y. Is M independent of X? Yes (No.)

10 pts. 5. Suppose that (X, Y) is a continuous random vector with cdf F(x, y) = 4xy for all $a \le x \le b$ and $a \le y \le b$ (and zero elsewhere).

total (a) What is the value of a?

5 pts. (b) What is the value of b?

$$f = F(b, b) = 4b^2 \implies b = \frac{1}{2} \implies b = \frac{1}{2}$$

25 pts

6. Consider defects that occur as we manufacture copper tubing. Assume that the defects occur according to a Poisson process with rate $\lambda = 0.02$ defects per foot. Let T_j denote the location of the 1th defect as measured (in feet) from the beginning of this run of tubing:

Suppose that the tubing is cut into tubes eight-feet long. Consider a pile of ten tubes. Let X_i denote the number of defects in tube i for i = 1, 2, ..., 10.

Tube i is classified as being "defect free" if $X_i = 0$, "good" if $1 \le X_i \le 2$, and "defective" if $3 \le X_i$.

Still considering the ten tubes, let Y_1 denote the number of "defect free" tubes, Y_2 the number of "good" tubes.

Spts.

(a) What is the value of E(X₁)?

$$X_i \sim P_{oisson}$$

 $E(X_i) = \lambda t = (.02 \frac{\text{defects}}{f_{i-t}}) (8 \text{ feet}) = 0.16 \text{ defects}$

5 pts

(b) Let A denote the event that a randomly chosen tube is "defect free". What is the

value of
$$P(A)$$
?
$$P(A) = P(X = 0)$$

$$= -16$$

The fact that the sixth tube is "defect free" $(X_6=0)$ or not $(X_6\neq 0)$ will affect the value of Y_1 (number of "defect free" tubes).

5 pts

(c) What is the value of E(T₃)?

(c) What is the value of
$$E(T_3)$$
?

$$T_3 \sim E_r / ang \left(r = 3, A = 0.02 \right)$$

$$E(T_3) = \frac{3 defects}{1} = 150 \text{ feet}$$

$$E(T_3) = \frac{3}{1} = \frac{3 defects}{102 defects} = 150 \text{ feet}$$

(d) Is
$$Y_1$$
 independent of Y_2 ? Yes (No) $(Y_1 = 100 \Rightarrow Y_2 = 0)$
(e) Is Y_1 independent of X_6 ? Yes (No) $(Y_1 = 1000 \text{ feet} \Rightarrow X_6 = 0)$

IE 230 — Probability & Statistics in Engineering I

Continuous Distributions: Summary Table

random variable	distribution name	range	cumul. dist. func.	probability density func.	expected value	variance
X	general	(-∞, ∞)	$P(X \le x)$ $= F(x)$ $= F_X(x)$	$\frac{dF(y)}{dy} \left y = x \right $ $= f(x)$ $= f_X(x)$	$\int_{-\infty}^{\infty} x f'(x) dx$ $= \mu = \mu_X$ $= E(X)$	$\int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$ $= \sigma^2 = \sigma_X^2$ $= V(X)$ $= E(X^2) - \mu^2$
Х	continuous uniform	[a, b]	$\frac{x-a}{b-a}$	Total	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
sum of random variables	normal (or Gaussian)	(-os, os)	Table II	$\frac{\frac{-1}{2} \left[\frac{z-z}{q} \right]^2}{\sqrt{2\pi} \ \sigma}$	μ	σ^2
time to Poisson count	exponential	$[0,\infty)$	$1-e^{-\lambda_d}$	$\lambda e^{-\lambda t}$	17λ	$1/\lambda^2$
time to #th Poisson count	Erlang	[0, =>)	$\sum_{k=r}^{\infty} \frac{e^{-\lambda x} (\lambda x)^k}{k!}$	$\frac{\lambda^r x^{r-1} e^{-\lambda x}}{(r-1)!}$	r/).	r/λ^2
lifetime	дапина	[0, -)	numerical	$\frac{\lambda^r x^{r-1} e^{-\lambda x}}{\Gamma(r)}$	r/2	r/λ^2
lifetime	Weibull	[0, 10)	$1 - e^{-(x_i\theta)^k}$	$\frac{\beta x^{\beta-1}e^{-(x,\delta)^{\beta}}}{\delta^{\beta}}$	$\delta\Gamma(1{+}\frac{1}{\beta})$	$\delta^2\Gamma(1{+}\frac{2}{\beta})\!{-}\mu^2$