Name ____ < KEY > ____

Please read these directions.

Closed book and notes. 60 minutes.

Covers through the normal distribution, Section 4.6 of Montgomery and Runger, fourth edition.

Cover page and four pages of exam. Pages 8 and 12 of the Concise Notes. A normal-distribution cdf table.

No calculator. No need to simplify beyond probability concepts. For example, unsimplified factorials, integrals, sums, and algebra receive full credit.

Throughout, f denotes probability mass function or probability density function and F denotes cumulative distribution function.

For one point of credit, write your name neatly on this cover page. Circle your family name.

For one point of credit, write your name on each of pages 1 through 4.

Score

Closed book and notes. 60 minutes.

- 1. Suppose that the random variable X has the discrete uniform distribution over the set $\{0, 1, ..., 10\}$ and that the random variable Y has the continuous uniform distribution over the set [0, 10].
 - (a) (3 pt) $T \leftarrow F = E(X) = E(Y)$.
 - (b) (3 pts) T $F \leftarrow V(X) = V(Y)$.
 - (c) (3 pts) T $F \leftarrow F_X(5) = F_Y(5)$.
 - (d) (3 pts) T $F \leftarrow f_X(5) = f_Y(5)$.
- 2. (from Montgomery and Runger, 3–113) In 1898 L. J. Bortkiewicz published a book entitled *The Law of Small Numbers*. He used data collected over twenty years to show that the number of soldiers killed by horse kicks each year in each corps in the Prussian cavalry followed a Poisson distribution with a mean of 0.61.
 - (a) (7 pts) For a particular corps over one year, determine the value of the probability of more than one death.

Deaths occur with rate $\lambda = 0.61$ deaths per year per corps. Let N = "number of deaths in one year in a particular corps". Then N is Poisson with rate $\mu = \lambda t = (0.61)(1) = 0.61$ deaths. Therefore, P(N > 1) = 1 - [P(N = 0) + P(N = 1)] $= 1 - \left[\frac{e^{-\mu}\mu^0}{0!} + \frac{e^{-\mu}\mu^1}{1!}\right] = 1 - e^{-0.61}[1 + 0.61] \leftarrow$

(b) (7 pts) For a particular corps over five years, determine the value of the probability of no death.

Deaths still occur with rate $\lambda = 0.61$ deaths per year per corps. Now let *N* denote the number of deaths during five years. Then *N* is Poisson with mean $\mu = \lambda t = (0.61)(5) = 3.05$. Therefore, $P(N = 0) = \frac{e^{-\mu}\mu^0}{0!} = e^{-3.05} \leftarrow$

- 3. (from Montgomery and Runger, 4–61) The lifetime of a semiconductor laser at a constant power is normally distributed with a mean of 6000 hours and standard deviation of 500 hours.
 - (a) (8 pts) Sketch the corresponding normal pdf. Label and scale both axes.

Sketch two axes.
Label the horizontal axis with x and the vertical with $f_X(x)$.
Scale the horizontal axis with at least two numbers.
The easiest is to place the mean 6000 at the center.
Maybe place 5500 and 6500 at the points of inflection.
Maybe place 4500 and 7500 where the bell curve disappears.
Scale the vertical axis.
Placing zero at the bottom of the bell curve is an easy number.
The height at the mode is $1/(500\sqrt{2\pi})$.
Or sketch a rectangle to determine a height.

(b) (8 pts) Determine the value of the probability that a randomly selected laser fails between 4000 and 5000 hours. Provide at least three digits of precision.

$$\begin{split} \mathsf{P}(4000 < X < 5000) &= \mathsf{P}(7000 < X < 8000) = F_X(8000) - F_X(7000) \\ &= F_Z(4) - F_Z(2) \approx 0.999968 - 0.977250 \approx 0.0227 \bigstar \end{split}$$

Notice that including, or excluding, 4000 and 5000 makes no difference.

(c) (8 pts) Let q denote the correct answer to Part (b). If three lasers are used in a product, and all have independent lifetimes, determine the value of the probability that all three lasers fail between 4000 and 5000 hours.

Let L_i denote that laser *i* has a lifetime in (4000, 5000).

Then $P(L_i) = q \approx 0.0227$.

Then L_1, L_2 , and L_3 are Bernoulli trials, with probability of success q.

Let *X* denote the number of trials that succeed.

So *X* is binomial with n = 3 and p = q. From Page 8 of the Concise Notes,

$$P(N = 3) = f_X(3) = \begin{bmatrix} 3 \\ 3 \end{bmatrix} q^3 (1 - q)^{3 - 3} = q^3 \leftarrow$$

- Name ____
- 4. Result. For c = 1, 2, ..., the geometric cdf is $F_X(c) = 1 (1 p)^c$, where p denotes the probability of success on each Bernoulli trial.

(3 pts each) For each of the six lines (a–f), state why the corresponding equality is true.

Each blank requires one reason; reasons may be reused. Choose the reasons from this list:

- (i) Events partition the sample space.
- (ii) Events are complementary.
- (iii) Events are mutually exclusive.
- (iv) Events are independent.
- (v) Events are the same.
- (vi) Definition of conditional probability.
- (vii) Definition of cumulative distribution function.
- (viii) Definition of probability mass function.
- (ix) Multiplication Rule.
- (x) Total Probability.
- (xi) Substitute known values.

Proof. Let *c* be a positive integer. Let A_i denote success on the *i* th trial.

$F_X(c)$	$= \mathbf{P}(X \leq c)$	(a) < vii >
	$= 1 - \mathbf{P}(X > c)$	(b) < ii >
	$= 1 - P(A'_1 \cap A'_2 \cap \cdots \cap A'_c)$	(c) < v >
	= $1 - P(A'_1) P(A'_2) \cdots P(A'_c)$	(d) < iv >
	= $1 - [1 - P(A_1)] [1 - P(A_2)] \cdots [1 - P(A_c)]$	(e) < ii >
	$= 1 - (1 - p)^{c}$	(f) < xi >

- 5. For (a–e), provide the name of the corresponding family of distributions.
 - (a) (3 pts) The number of coin flips until the fourth "head".

negative binomial

(b) (3 pts) When drawing, without replacement, five cards from a standard card deck, the number of aces drawn.

hypergeometric ←

(c) (3 pts) When drawing, with replacement, five cards from a standard card deck, the number of aces drawn.

binomial ←

(d) (3 pts) The number of insect parts in a candy bar.

Poisson \leftarrow

(e) (3 pts) When playing Keno, the number of matched numbers.

```
hypergeometric ←
```

6. Short answer.

(a) (3 pts) Evaluate $\begin{bmatrix} 6\\2 \end{bmatrix}$, the number of ways to choose two items from six items.

$$\binom{6}{2} = \frac{6!}{2! \, 4!} = 15 \quad \leftarrow$$

(b) (3 pts) What is the numerical value of 0! ?

$$1! = 1 \leftarrow$$

(c) (3 pts) T \leftarrow F $P(\pi < X \le 2\pi) = F_X(2\pi) - F_X(\pi).$

(d) (3 pts) The mean of the binomial distribution is n p, the number of trials multiplied by the probability of success. The mean is in units of "trials". What are the units of the variance?

"trials" squared \leftarrow

(e) (3 pts) The mean of a distribution corresponds to the center of gravity. The variance of a distribution corresponds to...

the moment of inertia. \leftarrow

Name _____

random variable	distribution name	range	probability mass function	expected value	variance
X	general	x_1, x_2, \dots, x_n	$\mathbf{P}(X=x)$	$\sum_{i=1}^{n} x_i f(x_i)$	<i>i</i> =1
			=f(x)	$= \mu = \mu_X$	$=\sigma^2 = \sigma_X^2$
			$=f_X(x)$	$= \mathbf{E}(X)$	
					$= E(X^2) - \mu^2$
X	discrete	x_1, x_2, \ldots, x_n	1 / n	$\sum_{i=1}^{n} x_i / n$	$\sum_{i=1}^{n} x_i^2 / n] - \mu^2$
	uniform			<i>l</i> -1	
X	equal-space	x = a, a + c,, b	1/n	$\underline{a+b}$	$c^{2}(n^{2}-1)$
	uniform	where	n = (b - a + c) / c	2	12
"# successes in 1 Bernoulli	indicator variable	x = 0, 1	$n = (b - a + c) / c$ $p^{x} (1 - p)^{1 - x}$	р	<i>p</i> (1– <i>p</i>)
trial"				where	p = P("success")
"# successes in <i>n</i> Bernoulli	binomial	x = 0, 1,, n	$C_x^n p^x (1-p)^{n-x}$	np	<i>np</i> (1– <i>p</i>)
trials"				where	$\frac{p = P("success")}{(N-n)}$
"# successes in	hyper-	x =	$C_x^K C_{n-x}^{N-K} / C_n^N$	np	$np(1-p)\frac{(N-n)}{(N-1)}$
a sample of size <i>n</i> from a population of size <i>N</i>	geometric (sampling without	$(n - (N - K))^+$, , min{ K, n } and integer		where	p = K / N
containing K successes"	replacement)	integer			
"# Bernoulli trials until	geometric	<i>x</i> = 1, 2,	$p(1-p)^{x-1}$	1/p	$(1-p)/p^2$
1st success"				where	p = P("success")
"# Bernoulli trials until	negative binomial	x = r, r+1,	$C_{r-1}^{x-1} p^r (1-p)^{x-r}$	r / p	$r(1-p)/p^2$
<i>r</i> th success"				where	p = P("success")
"# of counts in time <i>t</i> from a	Poisson	$x = 0, 1, \dots$	$e^{-\mu} \mu^x / x!$	μ	μ
Poisson process with rate λ "				where	$\mu = \lambda t$

Discrete Distributions: Summary Table

Result. For x = 1, 2, ..., the geometric cdf is $F_X(x) = 1 - (1 - p)^x$.

Result. The geometric distribution is the only discrete memoryless distribution. That is, P(X > x + c | X > x) = P(X > c).

Result. The binomial distribution with p = K / N is a good approximation to the hypergeometric distribution when *n* is small compared to *N*.

general	$(-\infty,\infty)$	distrib. func.	density func.	value	
general	$(-\infty,\infty)$		dE(n)	8	∞
		$\mathbf{P}(X \leq x)$	$\frac{dF(y)}{dy} \bigg y = x$ $= f(x)$	$\int_{-\infty} xf(x)dx$	$\int_{-\infty} (x-\mu)^2 f(x) dx$
		=F(x)	=f(x)	$= \mu = \mu_X$	$=\sigma^2=\sigma_X^2$
		$=F_X(x)$	$=f_X(x)$		$= E(X^2) - \mu^2$
continuous	[a,b]	x - a		$\underline{a+b}$	$(b-a)^2$
uniform		b - a	b-a	2	12
riangular	[a,b]	(x-a)f(x)/2	2(x-d)		$(b-a)^2 - (m-a)(b-m)$
	[[[, 5]]			3 else $d = h$)	18
		$\frac{1-(b-x)j(x)/2}{2}$		cisc u = b	
ormal (or	$(-\infty,\infty)$	Table III	$\frac{\frac{-1}{2}\left[\frac{x-\mu}{\sigma}\right]}{\sqrt{2\pi}\sigma}$	μ	σ^2
Gaussian)					
exponential	$[0,\infty)$	$1 - e^{-\lambda x}$	$\lambda e^{-\lambda x}$	1/λ	$1/\lambda^2$
Erlang	$[0,\infty)$	$\sum_{k=r}^{\infty} \frac{\mathrm{e}^{-\lambda x} (\lambda x)^k}{k!}$	$\frac{\lambda^r x^{r-1} \mathrm{e}^{-\lambda x}}{(r-1)!}$	r / λ	r/λ^2
		K-1			
gamma	$[0,\infty)$	numerical	$\frac{\lambda^r x^{r-1} \mathrm{e}^{-\lambda x}}{\Gamma(r)}$	r /λ	r/λ^2
Weibull	$[0,\infty)$	$1 - \mathrm{e}^{-(x/\delta)^{\beta}}$	$\frac{\beta x^{\beta-1} e^{-(x/\delta)^{\beta}}}{\delta^{\beta}}$	$\delta\Gamma(1+\frac{1}{\beta})$	$\delta^2 \Gamma(1+\frac{2}{\beta})-\mu^2$
	uniform iangular ormal (or Gaussian) xponential crlang amma	uniformiangular $[a, b]$ ormal $(-\infty, \infty)$ (or Gaussian)(or (or (crangential))xponential $[0, \infty)$ crlang $[0, \infty)$	ontinuous $[a, b]$ $\frac{x-a}{b-a}$ uniform iangular $[a, b]$ $\frac{(x-a)f(x)/2}{\text{if } x \le m, \text{else}}$ 1-(b-x)f(x)/2 ormal $(-\infty, \infty)$ Table III (or Gaussian) xponential $[0, \infty)$ $1 - e^{-\lambda x}$ irlang $[0, \infty)$ $\sum_{k=r}^{\infty} \frac{e^{-\lambda x} (\lambda x)^k}{k!}$ amma $[0, \infty)$ numerical	ontinuous $[a,b]$ $\frac{x-a}{b-a}$ $\frac{1}{b-a}$ uniform iangular $[a,b]$ $\frac{x-a}{b-a}$ $\frac{1}{b-a}$ if $x \le m$, else $\frac{2(x-d)}{(b-a)(m-d)}$ $1-(b-x)f(x)/2$ $(d = a \text{ if } x \le m, d)$ ormal $(-\infty,\infty)$ Table III $\frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sqrt{2\pi}\sigma}$ (or Gaussian) xponential $[0,\infty)$ $1-e^{-\lambda x}$ $\lambda e^{-\lambda x}$ $\frac{e^{-\lambda x}(\lambda x)^k}{k!}$ $\frac{\lambda^r x^{r-1}e^{-\lambda x}}{(r-1)!}$ amma $[0,\infty)$ numerical $\frac{\lambda^r x^{r-1}e^{-\lambda x}}{\Gamma(r)}$ Veibull $[0,\infty)$ $1-e^{-(x/\delta)^\beta}$ $\frac{\beta x^{\beta-1}e^{-(x/\delta)^\beta}}{\delta^\beta}$	ontinuous $[a,b]$ $\frac{x-a}{b-a}$ $\frac{1}{b-a}$ $\frac{a+b}{2}$ uniform iangular $[a,b]$ $\frac{(x-a)f(x)/2}{if x \le m, else}$ $\frac{2(x-d)}{(b-a)(m-d)}$ $\frac{a+m+b}{3}$ $1-(b-x)f(x)/2$ $(d = a \text{ if } x \le m, else d = b)$ ormal $(-\infty,\infty)$ Table III $\frac{e^{-\frac{1}{2}\left[\frac{x-\mu}{\sigma}\right]^2}}{\sqrt{2\pi}\sigma}$ μ (or Gaussian) xponential $[0,\infty)$ $1-e^{-\lambda x}$ $\lambda e^{-\lambda x}$ $1/\lambda$ where $\frac{1}{2}\left[0,\infty\right]$ $\sum_{k=r}^{\infty} \frac{e^{-\lambda x}(\lambda x)^k}{k!} - \frac{\lambda^r x^{r-1}e^{-\lambda x}}{(r-1)!}$ r/λ amma $[0,\infty)$ numerical $\frac{\lambda^r x^{r-1}e^{-\lambda x}}{\Gamma(r)} - \frac{\lambda^r(1+\frac{1}{2})}{2}$

Continuous Distributions: Summary Table

Definition. For any r > 0, the gamma function is $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$.

- Result. $\Gamma(r) = (r-1)\Gamma(r-1)$. In particular, if r is a positive integer, then $\Gamma(r) = (r-1)!$.
- Result. The exponential distribution is the only continuous memoryless distribution. That is, P(X > x + c | X > x) = P(X > c).

Definition. A *lifetime* distribution is continuous with range $[0, \infty)$.

Modeling lifetimes. Some useful lifetime distributions are the exponential, Erlang, gamma, and Weibull.