Seat # _____

Closed book and notes. No calculators.

60 minutes, but essentially unlimited time.

Cover page, four pages of exam, and Pages 8 and 12 of the Concise Notes.

This test covers through Section 4.5 of Montgomery and Runger, fourth edition.

Reminder: A statement is true only if it is always true.

Recall: If X is the indicator function of the event A, then X = 1 if A occurs and X = 0 if A does not occur.

Score _____

- 1. True or false. (For each: three points if correct, zero points if blank or wrong.)
 - (a) T $F \leftarrow$ The mean of a Poisson distribution is always a nonnegative integer.
 - (b) T F \leftarrow If X is a random variable, then $f_X(6) = P(X = 6)$.
 - (c) T F \leftarrow If X is a continuous random variable, then $f_X(6) \le 1$.
 - (d) $T \leftarrow F$ If X is a continuous random variable, the P(X = 6) = 0.
 - (e) $T \leftarrow F$ Let X denote a random variable whose smallest value is a and largest value is b. Then always $a \le E(X) \le b$.
 - (f) T ← F If the random variable X has units "US dollars", then its expected value is also in "US dollars" and its standard deviation is in "US dollars".
 - (g) T \leftarrow F For every random variable X, $P(6 < X \le 10) = F_X(10) F_X(6)$.
 - (h) $T \leftarrow F$ If X is the indicator function for the event A, then E(X) = P(A).
 - (i) $T \leftarrow F$ If X is a continuous random variable, then $P(a \le X \le b) = P(a < X < b)$.
- 2. Short answer (four points each)
 - a. Define random variable.

A function that assigns a real number to every outcome in the sample space.

b. Define *Bernoulli trial*.

Bernoulli trials have exactly two outcomes, usually denoted by "success" and "failure". The probabilities of success and failure, usually denoted by p and 1-p, are constant. The trials are independent of each other.

c. Determine the value of C_7^{9} , the number of ways to take seven items from a set of nine items. (Simplify)

$$C_7^9 = 9! / (7! 2!) = (9)(8)/2 = 36 \leftarrow$$

- 3. (Montgomery and Runger, 3–119) Let the random variable Y be equally likely to assume any of the values 1/8, 1/4, or 5/8. No other values are possible.
 - (a) (five points) Write f_Y , the probably mass function of Y.

 $f_Y(c) = 1/3$ if c = 1/8, 1/4, or 5/8. Otherwise $f_Y(c) = 0$.

(b) (five points) Determine, E(Y), the expected value of Y.

$$E(Y) = (1/8)(1/3) + (1/4)(1/3) + (5/8)(1/3) = 1/3 \leftarrow$$

(c) (four points) Determine $F_{Y}(0.5)$, the cumulative distribution function evaluated at 0.5.

$$F_Y(0.5) = P(Y \le 0.5) = P(Y = 1/8) + P(Y = 1/4) = f_Y(1/8) + f_Y(1/4) = 2/3 \leftarrow -2/3 = 1/2$$

- 4. Let *X* denote the number of matches in Keno, where 20 of 80 numbers light up. Suppose that you, the player, have chosen 5 numbers.
 - (a) (three points) Write the values for the hypergeometric parameters N, K, and n.
 - $N = 80 \leftarrow$ $K = 20 \leftarrow$ $n = 5 \leftarrow$

(b) (four points) Determine the probability of more than one match.

P(more than one match) = P(X > 1) = $f_X(2) + f_X(3) + f_X(4) + f_X(5)$ or P(more than one match) = P(X > 1) = 1 - [$f_X(0) + f_X(1)$], where $f_X(c) = C_c^{20} C_{20-c}^{60} / C_5^{80}$.

- 5. (Montgomery and Runger, 3-121) Batches that consist of 52 coil springs from a production process are checked for conformance to customer requirements. The mean number of nonconforming coil springs in a batch is five. Assume that the number of nonconforming springs in a batch, denoted by X, is a binomial random variable.
 - (a) (four points) What is the experiment?

Choose a random batch of 52 coil springs.

- (b) (two points) What is the value of the parameter n? ____< 52 > ____
- (c) (two points) What is the value of the parameter p? ____< 5 / 52 > ____
- (d) (six points) Determine the probability of at least 51 nonconforming springs.

P(at least 51 nonconforming springs) = P(X \ge 51) = f_X(51) + f_X(52) where $f_X(c) = C_c^n p^c (1-p)^{n-c}$

- 6. (Montgomery and Runger, 4–5) Consider the pdf $f_X(x) = cx^2$ for $-1 \le x \le 1$.
 - (a) (five points) Sketch f_X , including labeling and scaling both axes.

Sketch a horizontal and a vertical axis. Label the horizontal axis with a dummy variable, such as x. Label the vertical axis with $f_X(x)$. Scale the horizontal axis with at least two numbers, probably -1, 0, and 1. Scale the vertical axis with at least two numbers, probably 0 and c = 3/2. Sketch the function f_X , including the zero values outside the interval [-1, 1].

Comment: c = 3/2 is the value that yields one as the area under f_X .

(b) (five points) Sketch the cdf F_X , including labeling and scaling both axes.

Sketch a horizontal and a vertical axis. Label the horizontal axis with a dummy variable, such as *x*. Label the vertical axis with $F_X(x)$. Scale the horizontal axis with at least two numbers, probably -1, 0, and 1. Scale the vertical axis with at least two numbers, probably 0 and 1. Sketch the function $F_X(x) = P(X \le x) = (x^3 + 1)/2$ when $-1 \le x \le 1$, $F_X(x) = 0$ when x < -1, and $F_X(x) = 1$ when x > 1. 7. Result: If X is a geometric random variable, then $F_X(x) \le 1 - (1-p)^x$ for x = 1, 2, ..., where 1-p denotes the probability of failure.

(4 points each) For each of the four lines, state why the corresponding equality is true.

Let A_i denote the event that the *i* th Bernoulli trial is a failure.

Each blank requires one reason; reasons may be reused. Choose the reasons from this list:

- (i) Events partition the sample space.
- (ii) Events are complementary.
- (iii) Events are mutually exclusive.
- (iv) Events are independent.
- (v) Events are the same.
- (vi) Definition of conditional probability.
- (vii) Multiplication Rule.
- (viii) Total Probability.
- (ix) Bayes's Rule.
- (x) Algebra (i.e., no set theory or probability needed).
- (xi) Definition of probability mass function.
- (xii) Definition of cumulative distribution function.
- (xiii) X is continuous.
- (xiv) X is discrete.

$$F_{X}(x) = P(X \le x) \qquad \qquad (< xii >) \\ = 1 - P(X > x) \qquad (< ii >) \\ = 1 - P(A_{1} \cap A_{2} \cap \cdots \cap A_{x}) \qquad (< v >) \\ = 1 - P(A_{1}) P(A_{2}) \dots P(A_{x}) \qquad (< iv >) \\ = 1 - (1 - p)^{x} \qquad Definition of 1 - p.$$

random variable	distribution name	range	probability mass function	expected value	variance
X	general	x_1, x_2, \dots, x_n	$\mathbf{P}(X=x)$	$\sum_{i=1}^{n} x_i f(x_i)$	
			=f(x)	i=1 = $\mu = \mu_{v}$	i=1 = $\sigma^2 = \sigma_X^2$
			$=f_X(x)$	= E(X)	
					$= E(X^2) - \mu^2$
X	discrete	x_1, x_2, \ldots, x_n	1 / n	-	$\left[\sum_{i=1}^{n} x_{i}^{2} / n\right] - \mu^{2}$
	uniform			<i>i</i> =1	<i>i</i> =1
X	equal-space	x = a, a + c,, b	1 / n	<u>a+b</u>	$c^{2}(n^{2}-1)$
	uniform	where	n = (h - a + c)/c	2	12
	indicator variable	x = 0, 1	$n = (b - a + c) / c$ $p^{x} (1 - p)^{1 - x}$	p	<i>p</i> (1– <i>p</i>)
	variable			where	p = P("success")
	binomial	x = 0, 1,, n	$C_x^n p^x (1-p)^{n-x}$	np where	np(1-p) p = P("success")
	hyper-	<i>x</i> =	$C_x^K C_{n-x}^{N-K} / C_n^N$	np	$np(1-p)\frac{(N-n)}{(N-1)}$
	geometric	$(n-(N-K))^+$, , min{ K, n } and integer		where	p = K / N
			~ 1		2
	geometric	<i>x</i> = 1, 2,	$p(1-p)^{x-1}$	1/p where	$\frac{(1-p)/p^2}{p = P("success")}$ r (1-p)/p ²
	negative binomial	$\overline{x} = r, r+1, \dots$	$C_{r-1}^{x-1} p^r (1-p)^{x-r}$	r / p	$r \overline{(1-p)/p^2}$
				where	p = P("success")
	Poisson	<i>x</i> = 0, 1,	$e^{-\mu} \mu^x / x!$	μ where	$\mu = \lambda t$

Discrete Distributions: Summary Table

Result. For x = 1, 2, ..., the geometric cdf is $F_X(x) = 1 - (1 - p)^x$.

- Result. The geometric distribution is the only discrete memoryless distribution. That is, P(X > x + c | X > x) = P(X > c).
- Result. The binomial distribution with p = K / N is a good approximation to the hypergeometric distribution when *n* is small compared to *N*.

IE230

random variable	distribution name	range	cumulative distrib. func.	probability density func.	expected value	variance
X	general	$(-\infty,\infty)$	· /	$\frac{dF(y)}{dy}\bigg _{y=x}$	$\int_{-\infty}^{\infty} xf(x)dx$	$\int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$
			$= F(x)$ $= F_X(x)$	$=f_X(x)$	$= \mu - \mu_X$ $= E(X)$	$= V(X)$ $= E(X^{2}) - \mu^{2}$
X	continuous uniform	[<i>a</i> , <i>b</i>]	$\frac{x-a}{b-a}$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{\left(b-a\right)^2}{12}$
X	triangular	[<i>a</i> , <i>b</i>]	if $x \le m$, else	$\frac{2(x-d)}{(b-a)(m-d)}$ (d = a if x ≤ m,	3	$\frac{(b-a)^2 - (m-a)(b-m)}{18}$
sum of random variables	normal (or Gaussian)	$(-\infty,\infty)$	Table III	$\frac{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}{\frac{e}{\sqrt{2\pi}\sigma}}$	μ	σ^2
time to Poisson count 1	exponential	[0,∞)	$1 - e^{-\lambda x}$	$\lambda e^{-\lambda x}$	1/λ	$1/\lambda^2$
time to Poisson count <i>r</i>	Erlang	[0,∞)	$\sum_{k=r}^{\infty} \frac{\mathrm{e}^{-\lambda x} (\lambda x)^k}{k!}$	$\frac{\lambda^r x^{r-1} \mathrm{e}^{-\lambda x}}{(r-1)!}$	r /λ	r/λ^2
lifetime	gamma	$[0,\infty)$	numerical	$\frac{\lambda^r x^{r-1} \mathrm{e}^{-\lambda x}}{\Gamma(r)}$	r /λ	r/λ^2
lifetime	Weibull	$[0,\infty)$	$1-\mathrm{e}^{-(x/\delta)^{\beta}}$	$\frac{\beta x^{\beta-1} e^{-(x/\delta)^{\beta}}}{\delta^{\beta}}$	$\delta\Gamma(1+\frac{1}{\beta})$	$\delta^2 \Gamma(1+\frac{2}{\beta})-\mu^2$

Continuous Distributions: Summary Table

Definition. For any r > 0, the gamma function is $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$. Result. $\Gamma(r) = (r-1)\Gamma(r-1)$. In particular, if r is a positive integer, then $\Gamma(r) = (r-1)!$. Result. The exponential distribution is the only continuous memoryless distribution. That is, P(X > x + c | X > x) = P(X > c).

Definition. A *lifetime* distribution is continuous with range $[0, \infty)$.

Modeling lifetimes. Some useful lifetime distributions are the exponential, Erlang, gamma, and Weibull.