
MATH 265 FINAL EXAM, Spring 2007

Name and ID:

Instructor: Section or class time:

Instructions: Calculators are not allowed. There are 25 multiple choice problems
worth 8 points each, for a total of 200 points.
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1. For what values of h and k the system Ax = b has infinitely many solutions?

A =


1 1 4

−3 −3 h

1 8 0

 , b =


−2

k

0

 .

A. h 6= 12 and k any number

B. h = −12 and k any number

C. h = −12 and k = 6

D. h = −11 and k = 6

E. h =6= −11 and k 6= 6
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2. The inverse of the matrix

A =


1 −1 0

2 0 1

0 1 −1

 is A−1 =


a 1/3 1/3

−2/3 b 1/3

−2/3 1/3 c

 .

What is a + b + c?

A. 0

B. −1/3

C. −2/3

D. 1/3

E. 2/3
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3. Let A, B and C be invertible n × n matrices. If A−1B−1 = C−1, then what is
A?

A. A = CB−1

B. A = C−1B−1

C. A = BC−1

D. A = B−1C

E. A = BC

4



4. If (x1, x2, x3) is the solution of the following system of equations

x1 + 3x2 + x3 = 1

2x1 + 4x2 + 7x3 = 2

3x1 + 10x2 + 5x3 = 7

then x2 =

A. 29/9

B. 8/9

C. 59/9

D. 9/8

E. 20/9
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5. Which of the following statements are true?

(i). A linear system of four equations in three unknowns is always inconsistent

(ii). A linear system with fewer equations in than unknowns must have in-
finitely many solutions

(iii). If the system Ax = b has a unique solution, then A must be a square
matrix.

A. all of them

B. (i) and (ii)

C. (ii) and (iii)

D. (iii) only

E. none of them
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6. If 1 2

1 3

 (

1 0

3 1

a

b

 +

1

1

) =

−11

1


what is a + b?

A. −13

B. −5

C. −1

D. 5

E. 13
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7. What vector is represented by the following:

OOy

// x

•
(1, 2)

•
(4, 3)
44jjjjjjjj

A.

 1

2


B.

 4

3


C.

 3

1


D.

 −3

−1


E.

 3

4


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8. Which of the following are subspaces of P3 (the vector space of all polynomials
of degree ≤ 3)?

(I) {1 + t2}
(II) {at + bt2 + (a + b)t3} with a, b real numbers

(III) {a + bt + abt2} with a, b real numbers

(IV) {polynomials p(t) with p(2) = 0}

A. (II) and (III) only.

B. (I) only.

C. (II) and (IV) only.

D. (I) and (IV) only.

E. (I), (II), and (III) only.
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9. Which of the following sets of vectors in M2×2 (the vector space of 2×2 matrices)
are linearly independent?

(I)


 1 0

1 0

 ,

 0 1

0 0

 ,

 1 1

1 0

 ,

 1 1

0 0


(II)


 0 1

1 0

 ,

 0 0

2 3

 ,

 0 1

0 1

 ,

 0 3

2 1


(III)


 0 1

1 0

 ,

 0 1

3 0

 ,

 0 2

1 0


(IV)


 0 1

2 3

 ,

 0 3

2 1

 ,

 0 0

1 0


A. (III) and (IV) only.

B. (IV) only.

C. (II) and (IV) only.

D. (I) and (II) only.

E. All of them are linearly independent.
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10. Which of the following span R2?

(I)


 1

2

 ,

 0

0

 ,

 3

6


(II)


 1

1


(III)


 1

2

 ,

 2

1


(IV)


 1

2

 ,

 2

3

 ,

 3

4


A. (II) only.

B. (I), (III), and (IV) only.

C. (III) only.

D. (I) and (IV) only.

E. (III) and (IV) only.
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11. For four vectors v1,v2,v3,v4 ∈ R4, suppose that the 4×4 matrix A =
[
v1 v2 v3 v4

]
has its reduced row echelon form

rref(A) =


1 2 0 0

0 0 1 3

0 0 0 0

0 0 0 0

 .

Then, which of the following pairs gives a basis for the vector space Span{v1,v2,v3,v4}?

A.




1

0

0

0

 ,


0

1

0

0





B.




1

0

0

0

 ,


2

0

0

0




C. {v1,v3}
D. {v1,v2}
E. Cannot be determined from the given information.
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12. Suppose that a 4× 4 matrix A has its reduced row echelon form

rref(A) =


1 2 0 0

0 0 1 3

0 0 0 0

0 0 0 0

 .

Let r be the rank of the matrix A, and let d be the determinant of the matrix
A. Then, what is the value of r2 + d2?

A. 4

B. 5

C. 6

D. 8

E. 9
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13. Consider the following matrices:

A =


1 2 0

0 1 p

0 0 q

 ,b =


1

2

0

 .

Then, which of the following statement is false?

A. If q = 0, then the nullity of the matrix A is 1.

B. If A is invertible, then the equation Ax = b has x =
[
−3 2 0

]T

as its

only solution.

C. The eigenvalues of the matrix A are 1 and q.

D. If Ax = b has more than one solution, then q must be zero.

E. The rank of the augmented matrix [A|b] is always 3.
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14. Let x,y ∈ R2 be two vectors, satisfying the following properties:

(i) x · y = 0.

(ii) ||x|| = 2, ||x|| = 1.

Then, for real numbers a, b, what is the expression for ||ax + by||2?

A. a2 + b2

B. 2a2 + b2

C. 4a2 + b2

D. 4a2 + 4ab + b2

E. a2 + 4ab + 4b2
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15. Let W be a subspace of R3 spanned by (1, 2, 3), (2, k, 3), (4, 5, k +8). Determine
the values of k so that W⊥ has dimension zero.

A. k 6= 7

B. k 6= 7, k 6= −1

C. k 6= 7, k 6= 1

D. k = 7, k = 1

E. k = 7, k = −1
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16. Let A be the standard matrix representing the linear transformation L : R3 →
R3. Let v1 = (2, 1, 4),v2 = (0, 5, 2),v3 = (0, 0, 1) be eigenvectors of the matrix
A associated with eigenvalues λ1 = 1, λ2 = −3, λ3 = −2 respectively. Find
L(v1 − v2 + 3v3).

A. (2,−4, 5)

B. (2,−14,−8)

C. (2, 16, 16)

D. (2, 16, 4)

E. (2,−14, 4)
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17. Let W be a subspace of R3 with an basis {(1, 1, 0), (0, 1,−1)}, and let v =
(2, 0,−4). Find the vector w in W closest to v.

A. (1, 3,−2)

B. (0, 2,−2)

C. (2,−2,−2)

D. (1,−3,−2)

E. (1, 2, 1)
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18. If A and B are n× n-matrices, which statement is false?

A. det(AB) = det(A) det(B)

B. det(AT) = det(A)

C. If k is a nonzero scalar, then det(kA) = k det(A).

D. If A is nonsingular, then det(A−1) = 1/ det(A).

E. If A and B are similar matrices, then det(A) = det(B).
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19. Compute the det(A).

A =


2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2


A. 5

B. 16

C. 0

D. -5

E. 11
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20. Find the values of α for which A is singular.

A =


2 1 3α 4

0 α− 1 4 0

0 0 2 1

0 0 α 4


A. α = 0

B. α = 1

C. α = 2 and α = 3

D. α = 1 and α = 8

E. α = 0 and α = 1
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21. What is the coefficient of the x3 term in the polynomial

q(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

3x 5 7 1

2x2 5x 6 2

1 x 0 3

2 1 4 7

∣∣∣∣∣∣∣∣∣∣∣∣
A. 17

B. -17

C. 90

D. -90

E. 0
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22. Let A−1 be the inverse of the following matrix A.

A =

1 + i −1

1 i


What is

A−1 +

1 0

0 1

?

A.

1 + i 1

1 1− i


B.

1− i −1

−1 1 + i


C.

2 −i

i 2− i


D.

1− i 1

1 1 + i


E.

4 1− i

i 2− i


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23. The matrix A is 
0 0 0

0 1 2

2 1 0

 .

The eigenvalues of A are

A. 0, 1, 2

B. 0,−1, 2

C. 0, 1,−2

D. 0,−1,−2

E. −1, 0, 1
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24. Let matrix A be the following 3× 3 matrix.

A =


1 1 1

1 1 1

1 1 1


Which matrix P below gives us the following result?

P T AP =


0 0 0

0 0 0

0 0 3

 ,

where P T is the transpose of matrix P .

A. P =


1√
3

1√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3

− 2√
6

0



B. P =


1√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3

− 2√
6

0 1√
3



C. P =


1 1 1

1 −1 1

−2 0 1



D. P =


1 1 1

1 1 −1

−2 1 0



E. P =


1√
6

1√
3

1√
2

1√
6

1√
3

− 1√
2

− 2√
6

1√
3

0


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25. The eigenvectors of

 3 −1

−2 2

 are

1

2

 and

 1

−1

 with eigenvalues 1 and 4

respectively. If x1(t) and x2 are the solution ofx′1(t)

x′2(t)

 =

 3 −1

−2 2

x1(t)

x2(t)

 ,

x1(0) = 90, x2(0) = 150

then
x1(1) + x2(1) is equal to

(a) 240e

(b) 200e

(c) 230e

(d) 60e

(e) 360e
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