MATH 265 FINAL EXAM, Spring 2007

Name and ID:

Instructor:

Section or class time:

Instructions: Calculators are not allowed. There are 25 multiple choice problems worth 8 points each, for a total of 200 points.

1	14	
2	15	
3	16	
4	17	
5	18	
6	19	
7	20	
8	21	
9	22	
10	23	
11	24	
12	25	
13		

1. For what values of h and k the system $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions?

$$A = \begin{bmatrix} 1 & 1 & 4 \\ -3 & -3 & h \\ 1 & 8 & 0 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} -2 \\ k \\ 0 \end{bmatrix}.$$

- A. $h \neq 12$ and k any number
- B. h = -12 and k any number
- C. h = -12 and k = 6
- D. h = -11 and k = 6
- E. $h = \neq -11$ and $k \neq 6$

2. The inverse of the matrix

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix} \quad \text{is} \quad A^{-1} = \begin{bmatrix} a & 1/3 & 1/3 \\ -2/3 & b & 1/3 \\ -2/3 & 1/3 & c \end{bmatrix}.$$

What is a + b + c?

A. 0

- B. -1/3
 C. -2/3
 D. 1/3
- E. 2/3

- 3. Let A, B and C be invertible $n \times n$ matrices. If $A^{-1}B^{-1} = C^{-1}$, then what is A?
 - A. $A = CB^{-1}$ B. $A = C^{-1}B^{-1}$ C. $A = BC^{-1}$ D. $A = B^{-1}C$ E. A = BC

4. If (x_1, x_2, x_3) is the solution of the following system of equations

$$x_1 + 3x_2 + x_3 = 1$$

$$2x_1 + 4x_2 + 7x_3 = 2$$

$$3x_1 + 10x_2 + 5x_3 = 7$$

then $x_2 =$

A. 29/9B. 8/9C. 59/9

- D. 9/8
- E. 20/9

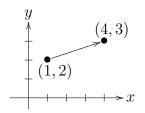
- 5. Which of the following statements are true?
 - (i). A linear system of four equations in three unknowns is always inconsistent
 - (ii). A linear system with fewer equations in than unknowns must have infinitely many solutions
 - (iii). If the system $A\mathbf{x} = \mathbf{b}$ has a unique solution, then A must be a square matrix.
 - A. all of them
 - B. (i) and (ii)
 - C. (ii) and (iii)
 - D. (iii) only
 - E. none of them

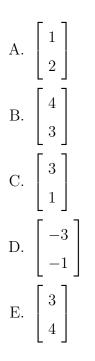
6. If

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -11 \\ 1 \end{bmatrix}$$

what is a + b?

- A. -13
- B. −5
- C. -1
- D. 5
- E. 13





- 8. Which of the following are subspaces of \mathcal{P}_3 (the vector space of all polynomials of degree ≤ 3)?
 - (I) $\{1+t^2\}$
 - (II) $\{at + bt^2 + (a + b)t^3\}$ with a, b real numbers
 - (III) $\{a + bt + abt^2\}$ with a, b real numbers
 - (IV) {polynomials p(t) with p(2) = 0}
 - A. (II) and (III) only.
 - B. (I) only.
 - C. (II) and (IV) only.
 - D. (I) and (IV) only.
 - E. (I), (II), and (III) only.

9. Which of the following sets of vectors in $M_{2\times 2}$ (the vector space of 2×2 matrices) are linearly independent?

$$(I) \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$
$$(II) \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} \right\}$$
$$(III) \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \right\}$$
$$(IV) \left\{ \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$$

- A. (III) and (IV) only.
- B. (IV) only.
- C. (II) and (IV) only.
- D. (I) and (II) only.
- E. All of them are linearly independent.

10. Which of the following span \mathbb{R}^2 ?

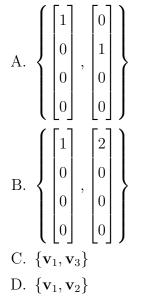
$$(I) \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 3\\6 \end{bmatrix} \right\}$$
$$(II) \left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$$
$$(III) \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$$
$$(IV) \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\}$$

- A. (II) only.
- B. (I), (III), and (IV) only.
- C. (III) only.
- D. (I) and (IV) only.
- E. (III) and (IV) only.

11. For four vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \in \mathbb{R}^4$, suppose that the 4×4 matrix $A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix}$ has its reduced row echelon form

$$rref(A) = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Then, which of the following pairs gives a basis for the vector space $Span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$?



E. Cannot be determined from the given information.

12. Suppose that a 4×4 matrix A has its reduced row echelon form

$$rref(A) = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Let r be the rank of the matrix A, and let d be the determinant of the matrix A. Then, what is the value of $r^2 + d^2$?

- A. 4
- B. 5
- C. 6
- D. 8
- E. 9

13. Consider the following matrices:

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & p \\ 0 & 0 & q \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

Then, which of the following statement is false?

- A. If q = 0, then the nullity of the matrix A is 1.
- B. If A is invertible, then the equation $A\mathbf{x} = \mathbf{b}$ has $\mathbf{x} = \begin{bmatrix} -3 & 2 & 0 \end{bmatrix}^T$ as its only solution.
- C. The eigenvalues of the matrix A are 1 and q.
- D. If $A\mathbf{x} = \mathbf{b}$ has more than one solution, then q must be zero.
- E. The rank of the augmented matrix $[A|\mathbf{b}]$ is always 3.

14. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ be two vectors, satisfying the following properties:

- (i) $\mathbf{x} \cdot \mathbf{y} = 0.$
- (ii) $||\mathbf{x}|| = 2, ||\mathbf{x}|| = 1.$

Then, for real numbers a, b, what is the expression for $||a\mathbf{x} + b\mathbf{y}||^2$?

- A. $a^2 + b^2$
- B. $2a^2 + b^2$
- C. $4a^2 + b^2$
- D. $4a^2 + 4ab + b^2$
- E. $a^2 + 4ab + 4b^2$

- 15. Let W be a subspace of \mathbb{R}_3 spanned by (1, 2, 3), (2, k, 3), (4, 5, k+8). Determine the values of k so that W^{\perp} has dimension zero.
 - A. $k \neq 7$ B. $k \neq 7$, $k \neq -1$ C. $k \neq 7$, $k \neq 1$ D. k = 7, k = 1E. k = 7, k = -1

- 16. Let A be the standard matrix representing the linear transformation $L : \mathbb{R}_3 \to \mathbb{R}_3$. Let $\mathbf{v}_1 = (2, 1, 4), \mathbf{v}_2 = (0, 5, 2), \mathbf{v}_3 = (0, 0, 1)$ be eigenvectors of the matrix A associated with eigenvalues $\lambda_1 = 1, \lambda_2 = -3, \lambda_3 = -2$ respectively. Find $L(\mathbf{v}_1 \mathbf{v}_2 + 3\mathbf{v}_3)$.
 - A. (2, -4, 5)
 - B. (2, -14, -8)
 - C. (2, 16, 16)
 - D. (2, 16, 4)
 - E. (2, -14, 4)

- 17. Let W be a subspace of \mathbb{R}_3 with an basis $\{(1,1,0), (0,1,-1)\}$, and let $\mathbf{v} = (2,0,-4)$. Find the vector \mathbf{w} in W closest to \mathbf{v} .
 - A. (1, 3, -2)
 - B. (0, 2, -2)
 - C. (2, -2, -2)
 - D. (1, -3, -2)
 - E. (1, 2, 1)

18. If A and B are $n \times n$ -matrices, which statement is false?

- A. det(AB) = det(A) det(B)
- B. $\det(A^{\mathrm{T}}) = \det(A)$
- C. If k is a nonzero scalar, then det(kA) = k det(A).
- D. If A is nonsingular, then $det(A^{-1}) = 1/det(A)$.
- E. If A and B are similar matrices, then $\det(A) = \det(B)$.

19. Compute the det(A).

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

- A. 5
- B. 16
- C. 0
- D. -5
- E. 11

20. Find the values of α for which A is singular.

$$A = \begin{bmatrix} 2 & 1 & 3\alpha & 4 \\ 0 & \alpha - 1 & 4 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & \alpha & 4 \end{bmatrix}$$

B. $\alpha = 1$

A. $\alpha = 0$

- C. $\alpha = 2$ and $\alpha = 3$
- D. $\alpha = 1$ and $\alpha = 8$
- E. $\alpha = 0$ and $\alpha = 1$

21. What is the coefficient of the x^3 term in the polynomial

$$q(x) = \begin{vmatrix} 3x & 5 & 7 & 1 \\ 2x^2 & 5x & 6 & 2 \\ 1 & x & 0 & 3 \\ 2 & 1 & 4 & 7 \end{vmatrix}$$

A. 17

B. -17

C. 90

D. -90

E. 0

22. Let A^{-1} be the inverse of the following matrix A.

$$A = \begin{bmatrix} 1+i & -1 \\ 1 & i \end{bmatrix}$$

What is

$$A^{-1} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}?$$

A.
$$\begin{bmatrix} 1+i & 1\\ 1 & 1-i \end{bmatrix}$$

B.
$$\begin{bmatrix} 1-i & -1\\ -1 & 1+i \end{bmatrix}$$

C.
$$\begin{bmatrix} 2 & -i\\ i & 2-i \end{bmatrix}$$

D.
$$\begin{bmatrix} 1-i & 1\\ 1 & 1+i \end{bmatrix}$$

E.
$$\begin{bmatrix} 4 & 1-i\\ i & 2-i \end{bmatrix}$$

23. The matrix A is

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{bmatrix}.$$

The eigenvalues of A are

A. 0, 1, 2B. 0, -1, 2C. 0, 1, -2D. 0, -1, -2E. -1, 0, 1 24. Let matrix A be the following 3×3 matrix.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Which matrix P below gives us the following result?

$$P^T A P = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix},$$

where P^T is the transpose of matrix P.

A.
$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \end{bmatrix}$$

B.
$$P = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ -\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{bmatrix}$$

C.
$$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{bmatrix}$$

D.
$$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ -2 & 1 & 0 \end{bmatrix}$$

E.
$$P = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \end{bmatrix}$$

25. The eigenvectors of $\begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$ are $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ with eigenvalues 1 and 4 respectively. If $x_1(t)$ and x_2 are the solution of

$$\begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix},$$
$$x_1(0) = 90, \quad x_2(0) = 150$$

then

$$x_1(1) + x_2(1)$$
 is equal to

- (a) 240*e*
- (b) 200*e*
- (c) 230*e*
- (d) 60e
- (e) 360*e*