Math 265 Linear Algebra

1. It is given that
$$A = \begin{bmatrix} 1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4 \end{bmatrix}$$
 and $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

- (a) Find the rank of A.
- (b) Find the nullity of A.
- (c) Find a basis for the column space of A.
- (d) Find a basis for the row space of A.
- (e) Find a basis for the null space of A.
- (f) Find a basis for the orthogonal complement of the row space of A.

- (a) Find the rank of A.
- (b) Find the nullity of A.
- (c) Find a basis for the column space of A.
- (d) Find a basis for the row space of A.
- (e) Find a basis for the null space of A.
- (f) Find a basis for the orthogonal complement of the row space of A.
- **3.** Find an equation relating a, b and c so that the linear system

$$\begin{cases} 2x + 2y + 3z = a\\ 3x - y + 5z = b\\ x - 3y + 2z = c \end{cases}$$

is consistent for any values a, b and c which satisfy that equation.

4. Determine the values of *a* so that the linear system

$$\begin{cases} x + y + z = 2\\ 2x + 3y + z = 5\\ 2x + 3y + (a^2 - 1)z = a + \end{cases}$$

1

has (a) no solution, (b) a unique solution, and (c) infinitely many solutions. 5. Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that

$$L\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}-3\\1\\2\end{bmatrix}, L\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\-2\\1\end{bmatrix}, L\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\2\\4\end{bmatrix}$$

Find
$$L\begin{pmatrix} \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \end{pmatrix}$$
.
6. Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that
 $L\begin{pmatrix} \begin{bmatrix} -2\\1\\-2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -3\\1\\2 \end{bmatrix}, L\begin{pmatrix} \begin{bmatrix} 3\\2\\-1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2\\-2\\1 \end{bmatrix}, L\begin{pmatrix} \begin{bmatrix} -1\\-1\\1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -1\\2\\4 \end{bmatrix}.$
Find $L\begin{pmatrix} \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \end{pmatrix}$.
7. Find the standard matrix of the linear transformation L defined by

he standard matrix of the linear transformation L defined by

$$L\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}2x-z\\x+2y+z\\3x-y\end{bmatrix}.$$

- 4y - 6z = 5.
- 9. Find an equation of the plane containing the two lines $\frac{x-3}{2} = \frac{y+1}{-3} = \frac{z-2}{4}$ and $\frac{x-3}{2} = \frac{y+1}{1} = \frac{z-2}{-1}.$
- **10.** Does the vector (6, 6, 0, -1) belong to the span of (1, 1, 0, 1), (-1, 1, 2, 0) and (2, 3, 1, -1)? If it does, write it as a linear combination of these three vectors.
- 11. For what values of d are the vectors (1,3,d), (1,1,0) and (0,1,1) linearly independent?
- **12.** Compute the inverse of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ -2 & 1 & 3 \\ 2 & -1 & 1 \end{bmatrix}$.

 13. Compute the inverse of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ -2 & 1 & 3 \\ 2 & -1 & 1 \end{bmatrix}$.

 14. Find ALL diagonal matrices similar to $A = \begin{bmatrix} 1 & 1 \\ -5 & 7 \end{bmatrix}$. **15.** Find a diagonal matrix similar to $A = \begin{bmatrix} 0 & 4 & 4 \\ 4 & 0 & 4 \\ 4 & 4 & 0 \end{bmatrix}$.
- 16. Find the cosine of the acute angle between the lines

$$l_1: \begin{cases} x = 1 + 2t \\ y = -2 - t \ l_2: \\ z = 4 - 2t \end{cases} \begin{cases} x = 1 + 2s \\ y = -2 - s \\ z = 4 + s \end{cases}$$

17. Use the Gram-Schmidt process to construct an orthonormal basis for the subspace W of \mathbb{R}^4 spanned by

$$(1, 1, 0, 0), (2, -1, 0, 1), (3, -3, 0, -2), (1, -2, 0, -3).$$

- **18.** Let W be the subspace of \mathbb{R}^3 spanned by the vector w = (1, 1, -1).
 - (a) Find a basis for the orthogonal complement W^{\perp} of W.
 - (b) Find an orthonormal basis for W^{\perp} .
- **19.** Let W be the subspace of \mathbb{R}^4 spanned by the vectors (1, 2, 0, -2), (0, 1, 2, 1) and (4, -1, 0, 1). Find the projection of (1, -1, 0, 4) onto W.
- **20.** Determine if each of the following statements is true for every 5×7 matrix A with $\operatorname{rank}(A) = 3$.

(a) For every b , the system $A\mathbf{x} = \mathbf{b}$ is uniquely solvable.	True	False
(b) For some b , the system $A\mathbf{x} = \mathbf{b}$ is uniquely solvable, and for		
some \mathbf{b} , it is not solvable.	True	False
(c) For every b , the system $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.	True	False
(d) For some b , the system $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions,		
and for some b , it is not solvable.	True	False
(e) For some b , the system $A\mathbf{x} = \mathbf{b}$ is not solvable.	True	False

- **21.** A, B and C are 3×3 matrices and k is a scalar. Determine if each of the following statements is *always* true.
 - (a) If $A^2 = I_3$, then $A = I_3$ or $-I_3$. True False

(b)
$$det(AB) = det(A) det(B)$$
. True False

- (c) $det(kA) = k^3 det(A)$. True False
- (d) If C is invertible, the characteristic polynomial of A is the same as that of C⁻¹AC.
 True False
- (e) det(adj(A)) = det(A). True False
- 22. For each of the following sets of vectors, determine if it is a vector (sub)space:
 - (a) The set of all vectors in \mathbb{R}^4 with the property $2x_1 + x_2 3x_3 + x_4 = 0$; Yes No
 - (b) The set of all vectors in \mathbb{R}^4 with the property $x_1^3 = x_2^3, x_3 = x_4$; Yes No
 - (c) The set of all vectors in \mathbb{R}^3 , which have the form (0, a b + c, 3b + c) where a, b and c are arbitrary real numbers; Yes No
 - (d) The set of all polynomials P in the space of all polynomials of degree at most 7, with the property P(2) = 0; Yes No

- (e) The set of all nonsingular matrices in the space of 3×3 matrices; Yes No
- **23.** Determine if each of the following sets of vectors is linearly independent or linearly dependent:

pendent.		
$\mathbf{(a)} \left\{ \begin{bmatrix} 2\\1\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 4\\1\\1\\2 \end{bmatrix}, \right\};$	Independent	Dependent
$\mathbf{(b)} \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\4\\5 \end{bmatrix} \right\};$	Independent	Dependent
(c) $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\4\\4 \end{bmatrix} \right\};$	Independent	Dependent
$(\mathbf{d}) \left\{ \begin{bmatrix} 1\\2\\5 \end{bmatrix}, \begin{bmatrix} 2\\1\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} -3\\2\\-1 \end{bmatrix} \right\};$	Independent	Dependent
(e) $\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$.	Independent	Dependent
24. We have a 3 × 3 matrix $A = \begin{bmatrix} a & 1 & 2 \\ b & 3 & 4 \\ c & 5 & 6 \end{bmatrix}$ with det $(A) = 3$.	Compute the det	erminant of
$\begin{bmatrix} a - 2 & 1 & 2 \end{bmatrix}$		
(a) $b-4 \ 3 \ 4$		
$\begin{bmatrix} c-6 & 5 & 6 \end{bmatrix}$		
(a) $\begin{bmatrix} a-2 & 1 & 2 \\ b-4 & 3 & 4 \\ c-6 & 5 & 6 \end{bmatrix}$ (b) $\begin{bmatrix} 7a & 7 & 14 \\ b & 3 & 4 \\ c & 5 & 6 \end{bmatrix}$ (c) $\begin{bmatrix} a & 1 & 1 \\ b & 3 & 3 \\ c & 5 & 5 \end{bmatrix}$		
(c) $\begin{bmatrix} a & 1 & 1 \\ b & 3 & 3 \\ c & 5 & 5 \end{bmatrix}^{-1}$		
$\begin{bmatrix} c & 5 & 5 \end{bmatrix}$ (d) A^T		
(e) $(5A)^{-1}$		
25. Let		
$A = egin{bmatrix} 1 & 1 & 1 \ a & b & c \ a^2 & b^2 & c^2 \end{bmatrix}.$		

Determine if each of the following statement is true or false.

	(a)	If any two of a, b, c have the same value, then $det(A) = 0$.	True	False		
	(b)	If a, b, c have distinct values, then A is nonsingular.	True	False		
	(c)	If $a > b > c$, then $det(A) < 0$.	True	False		
	(d)	If $rank(A) = 1$, then a, b and c must all be equal.	True	False		
	(e)	The rank of A can never be equal to 2.	True	False		
26.	Let	$A = \begin{bmatrix} 3 & -5 \\ 1 & -3 \end{bmatrix}.$				
	(a)	Find all eigenvalues of A .				
	(b)	For each eigenvalue above, find an eigenvector of A associated to it.				
	(c) Find a diagonal matrix D and a nonsingular matrix P such that $P^{-1}AP = D$.					
		Find A^{47} .				
27.	Let	$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$				

(a) Find all eigenvalues of A.

 $\mathbf{2}$

 $\mathbf{2}$

- (b) For each eigenvalue as above, find an eigenvector of A associated to it.
- (c) Find a diagonal matrix D and an orthogonal matrix P such that $P^T A P = D$.
- **28.** Determine an invertible matrix \hat{A} and a vector \hat{b} such that the solution to $\hat{A}\hat{X} = \hat{b}$ is the least squares solution to AX = b, where

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} \text{ and } b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

29. Find the least squares fit line for the points

30. We want to find the least squares quadratic polynomial for the points

- (a) If $y = b_2 x^2 + b_1 x + b_0$ were a parabola passing through all the points, then $X = \begin{bmatrix} b_2 \\ b_1 \\ b_0 \end{bmatrix}$ would satisfy the equation $AX = \mathbf{b}$ for a matrix A and a vector \mathbf{b} . Write down A and \mathbf{b} .
- and **b**. (**b**) If $y = \hat{b}_2 x^2 + \hat{b}_1 x + \hat{b}_0$ is the least squares quadratic polynomial, then $\hat{X} = \begin{bmatrix} \hat{b}_2 \\ \hat{b}_1 \\ \hat{b}_0 \end{bmatrix}$

satisfies the equation $\hat{A}\hat{X} = \hat{\mathbf{b}}$ for a matrix \hat{A} and a vector $\hat{\mathbf{b}}$. Write down \hat{A} and $\hat{\mathbf{b}}$. (c) Find the least squares quadratic polynomial. **31.** Let

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

be the linear system of differential equations where

$$A = \begin{bmatrix} 2 & -1 \\ 8 & 8 \end{bmatrix}.$$

- (a) Find all eigenvalues of A.
- (b) Find the general solution to the linear system of differential equations.
- (c) Find the solution given the initial condition of

$$x_1(0) = 3, x_2(0) = -10.$$

32. Let

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

be the linear system of differential equations where

$$A = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix}.$$

- (a) Find all eigenvalues of A.
- (b) Find the REAL general solution to the linear system of differential equations.

(c) Find the solution given the initial condition of

$$x_1(0) = 5, x_2(0) = 1.$$

33. Let

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \\ \frac{dx_3}{dt} \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

be the linear system of differential equations where

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

.

- (a) Find all eigenvalues of A.
- (b) Find the general solution to the linear system of differential equations.
- (c) Find the solution given the initial condition of

$$x_1(0) = -2, x_2(0) = 1, x_3(0) = 2.$$