1. It is given that $A=\left[\begin{array}{ccccc}1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4\end{array}\right]$ and $\operatorname{rref}(A)=\left[\begin{array}{ccccc}1 & 0 & -2 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find the rank of A.
(b) Find the nullity of A.
(c) Find a basis for the column space of A.
(d) Find a basis for the row space of A.
(e) Find a basis for the null space of A.
(f) Find a basis for the orthogonal complement of the row space of A.
2. It is given that $A=\left[\begin{array}{cccc}1 & 2 & 1 & -1 \\ 2 & 4 & 1 & -4 \\ -1 & -2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 3 & 6 & 2 & -5\end{array}\right]$ and $\operatorname{rref}(A)=\left[\begin{array}{cccc}1 & 2 & 0 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find the rank of A.
(b) Find the nullity of A.
(c) Find a basis for the column space of A.
(d) Find a basis for the row space of A.
(e) Find a basis for the null space of A.
(f) Find a basis for the orthogonal complement of the row space of A.
3. Find an equation relating a, b and c so that the linear system

$$
\left\{\begin{aligned}
2 x+2 y+3 z & =a \\
3 x-y+5 z & =b \\
x-3 y+2 z & =c
\end{aligned}\right.
$$

is consistent for any values a, b and c which satisfy that equation.
4. Determine the values of a so that the linear system

$$
\left\{\begin{aligned}
x+y+z & =2 \\
2 x+3 y+z & =5 \\
2 x+3 y+\left(a^{2}-1\right) z & =a+1
\end{aligned}\right.
$$

has (a) no solution, (b) a unique solution, and (c) infinitely many solutions.
5. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that

$$
L\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right], L\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right], L\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right] .
$$

Find $L\left(\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right)$.
6. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that

$$
L\left(\left[\begin{array}{c}
-2 \\
1 \\
-2
\end{array}\right]\right)=\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right], L\left(\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right], L\left(\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right]
$$

Find $L\left(\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right)$.
7. Find the standard matrix of the linear transformation L defined by

$$
L\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
2 x-z \\
x+2 y+z \\
3 x-y
\end{array}\right]
$$

8. Find an equation for the plane through the point $(1,-3,-2)$ parallel to the plane $3 x+$ $4 y-6 z=5$.
9. Find an equation of the plane containing the two lines $\frac{x-3}{2}=\frac{y+1}{-3}=\frac{z-2}{4}$ and $\frac{x-3}{2}=\frac{y+1}{1}=\frac{z-2}{-1}$.
10. Does the vector $(6,6,0,-1)$ belong to the span of $(1,1,0,1),(-1,1,2,0)$ and $(2,3,1,-1)$? If it does, write it as a linear combination of these three vectors.
11. For what values of d are the vectors $(1,3, d),(1,1,0)$ and $(0,1,1)$ linearly independent ?
12. Compute the inverse of the matrix $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ -2 & 1 & 3 \\ 2 & -1 & 1\end{array}\right]$.
13. Compute the inverse of the matrix $A=\left[\begin{array}{ccc}2 & -2 & 1 \\ -3 & 2 & 0 \\ 4 & 1 & 1\end{array}\right]$.
14. Find ALL diagonal matrices similar to $A=\left[\begin{array}{cc}1 & 1 \\ -5 & 7\end{array}\right]$.
15. Find a diagonal matrix similar to $A=\left[\begin{array}{lll}0 & 4 & 4 \\ 4 & 0 & 4 \\ 4 & 4 & 0\end{array}\right]$.
16. Find the cosine of the acute angle between the lines

$$
l_{1}:\left\{\begin{array}{l}
x=1+2 t \\
y=-2-t l_{2} \\
z=4-2 t
\end{array}:\left\{\begin{array}{l}
x=1+2 s \\
y=-2-s \\
z=4+s
\end{array}\right.\right.
$$

17. Use the Gram-Schmidt process to construct an orthonormal basis for the subspace W of \mathbb{R}^{4} spanned by

$$
(1,1,0,0),(2,-1,0,1),(3,-3,0,-2),(1,-2,0,-3)
$$

18. Let W be the subspace of \mathbb{R}^{3} spanned by the vector $w=(1,1,-1)$.
(a) Find a basis for the orthogonal complement W^{\perp} of W.
(b) Find an orthonormal basis for W^{\perp}.
19. Let W be the subspace of \mathbb{R}^{4} spanned by the vectors $(1,2,0,-2),(0,1,2,1)$ and $(4,-1,0,1)$. Find the projection of $(1,-1,0,4)$ onto W.
20. Determine if each of the following statements is true for every 5×7 matrix A with $\operatorname{rank}(A)=3$.
(a) For every \mathbf{b}, the system $A \mathbf{x}=\mathbf{b}$ is uniquely solvable.

True False
(b) For some \mathbf{b}, the system $A \mathbf{x}=\mathbf{b}$ is uniquely solvable, and for some \mathbf{b}, it is not solvable.
(c) For every \mathbf{b}, the system $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.

True False
(d) For some \mathbf{b}, the system $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions, and for some \mathbf{b}, it is not solvable.
(e) For some \mathbf{b}, the system $A \mathbf{x}=\mathbf{b}$ is not solvable.

True False
True False
21. A, B and C are 3×3 matrices and k is a scalar. Determine if each of the following statements is always true.
(a) If $A^{2}=I_{3}$, then $A=I_{3}$ or $-I_{3}$. True False
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
(c) $\operatorname{det}(k A)=k^{3} \operatorname{det}(A)$.

True False
True False
(d) If C is invertible, the characteristic polynomial of A is the same as that of $C^{-1} A C$.

True False
(e) $\operatorname{det}(\operatorname{adj}(A))=\operatorname{det}(A)$.

True False
22. For each of the following sets of vectors, determine if it is a vector (sub)space:
(a) The set of all vectors in \mathbb{R}^{4} with the property $2 x_{1}+x_{2}-3 x_{3}+x_{4}=0 ; \quad$ Yes No
(b) The set of all vectors in \mathbb{R}^{4} with the property $x_{1}^{3}=x_{2}^{3}, x_{3}=x_{4} ; \quad$ Yes No
(c) The set of all vectors in \mathbb{R}^{3}, which have the form $(0, a-b+c, 3 b+c)$ where a, b and c are arbitrary real numbers;

Yes No
(d) The set of all polynomials P in the space of all polynomials of degree at most 7 , with the property $P(2)=0$;

Yes No
(e) The set of all nonsingular matrices in the space of 3×3 matrices;
23. Determine if each of the following sets of vectors is linearly independent or linearly dependent:
(a) $\left\{\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 1 \\ 1 \\ 2\end{array}\right],\right\} ;$

Independent Dependent
(b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 4 \\ 5\end{array}\right]\right\}$;
(c) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 4 \\ 4\end{array}\right]\right\}$;

Independent Dependent
(d) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-3 \\ 2 \\ -1\end{array}\right]\right\}$;

Independent Dependent
(e) $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.

Independent Dependent

Independent Dependent
24. We have a 3×3 matrix $A=\left[\begin{array}{lll}a & 1 & 2 \\ b & 3 & 4 \\ c & 5 & 6\end{array}\right]$ with $\operatorname{det}(A)=3$. Compute the determinant of the following matrix
(a) $\left[\begin{array}{lll}a-2 & 1 & 2 \\ b-4 & 3 & 4 \\ c-6 & 5 & 6\end{array}\right]$
(b) $\left[\begin{array}{ccc}7 a & 7 & 14 \\ b & 3 & 4 \\ c & 5 & 6\end{array}\right]$
(c) $\left[\begin{array}{lll}a & 1 & 1 \\ b & 3 & 3 \\ c & 5 & 5\end{array}\right]$
(d) \bar{A}^{T}
(e) $(5 A)^{-1}$
25. Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right]
$$

Determine if each of the following statement is true or false.
(a) If any two of a, b, c have the same value, then $\operatorname{det}(A)=0$.
(b) If a, b, c have distinct values, then A is nonsingular.

True False
(c) If $a>b>c$, then $\operatorname{det}(A)<0$.
(d) If $\operatorname{rank}(\mathrm{A})=1$, then a, b and c must all be equal.

True False
(e) The rank of A can never be equal to 2 .

True False
True False
True False
26. Let $A=\left[\begin{array}{ll}3 & -5 \\ 1 & -3\end{array}\right]$.
(a) Find all eigenvalues of A.
(b) For each eigenvalue above, find an eigenvector of A associated to it.
(c) Find a diagonal matrix D and a nonsingular matrix P such that $P^{-1} A P=D$.
(d) Find A^{47}.
27. Let $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$.
(a) Find all eigenvalues of A.
(b) For each eigenvalue as above, find an eigenvector of A associated to it.
(c) Find a diagonal matrix D and an orthogonal matrix P such that $P^{T} A P=D$.
28. Determine an invertible matrix \hat{A} and a vector \hat{b} such that the solution to $\hat{A} \hat{X}=\hat{b}$ is the least squares solution to $A X=b$, where

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right] \text { and } b=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

29. Find the least squares fit line for the points

$$
(1,2),(2,1),(3,3),(4,3)
$$

30. We want to find the least squares quadratic polynomial for the points

$$
(1,1),(3,0),(4,3),(6,4)
$$

(a) If $y=b_{2} x^{2}+b_{1} x+b_{0}$ were a parabola passing through all the points, then $X=\left[\begin{array}{l}b_{2} \\ b_{1} \\ b_{0}\end{array}\right]$ would satisfy the equation $A X=\mathbf{b}$ for a matrix A and a vector \mathbf{b}. Write down A and \mathbf{b}.
(b) If $y=\hat{b}_{2} x^{2}+\hat{b}_{1} x+\hat{b}_{0}$ is the least sqaures quadratic polynomial, then $\hat{X}=\left[\begin{array}{c}\hat{b}_{2} \\ \hat{b}_{1} \\ \hat{b}_{0}\end{array}\right]$ satisfies the equation $\hat{A} \hat{X}=\hat{\mathbf{b}}$ for a matrix \hat{A} and a vector $\hat{\mathbf{b}}$. Write down \hat{A} and $\hat{\mathbf{b}}$.
(c) Find the least squares quadratic polynomial.
31. Let

$$
\left[\begin{array}{l}
\frac{d x_{1}}{d t} \\
\frac{d x_{2}}{d t}
\end{array}\right]=A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

be the linear system of differential equations where

$$
A=\left[\begin{array}{cc}
2 & -1 \\
8 & 8
\end{array}\right]
$$

(a) Find all eigenvalues of A.
(b) Find the general solution to the linear system of differential equations.
(c) Find the solution given the initial condition of

$$
x_{1}(0)=3, x_{2}(0)=-10
$$

32. Let

$$
\left[\begin{array}{l}
\frac{d x_{1}}{d t} \\
\frac{d x_{2}}{d t}
\end{array}\right]=A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

be the linear system of differential equations where

$$
A=\left[\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right]
$$

(a) Find all eigenvalues of A.
(b) Find the REAL general solution to the linear system of differential equations.
(c) Find the solution given the initial condition of

$$
x_{1}(0)=5, x_{2}(0)=1
$$

33. Let

$$
\left[\begin{array}{l}
\frac{d x_{1}}{d t} \\
\frac{d x_{2}}{d t} \\
\frac{d x_{3}}{d t}
\end{array}\right]=A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

be the linear system of differential equations where

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right]
$$

(a) Find all eigenvalues of A.
(b) Find the general solution to the linear system of differential equations.
(c) Find the solution given the initial condition of

$$
x_{1}(0)=-2, x_{2}(0)=1, x_{3}(0)=2 .
$$

