MATH 265 FINAL EXAM

Name and ID:

Instructor:

Section or class time:

Instructions: Calculators are not allowed. There are 8 problems in the first part worth 13 points each. There are 12 problems in the second part worth 8 points each. The total is 200 points.

1		
2		
3		
4		
5		
6		
7		
8		
9	x	
10	x	
11	x	
12	x	

Part I

You must show all work for problems in first part.

1. Let

$$
A=\left[\begin{array}{ll}
0 & a \\
b & c
\end{array}\right]
$$

(a) Find conditions on a, b and c such that A is symmetric.
(b) Find conditions on a, b and c such that A has an inverse.
(c) Find conditions on a, b and c such that A satisfies $A^{2}=0$.
2. Consider a linear system whose augmented matrix is of the form
$\left[\begin{array}{ccc|c}0 & t-7 & 0 & 6 \\ 0 & 2 & 2 t-2 & -2 \\ 1 & -1 & -2 & 1\end{array}\right]$
(a) For what values of t will the system have no solutions?
(b) For what values of t will the system have infinitely many solutions?
3. Find a basis for the subspace of \mathbb{R}^{4} spanned by

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
2 \\
3 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
0 \\
-3 \\
1
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] .
$$

4. Let W be the span of $(1,0,2)$ and $(0,1,0)$ in \mathbb{R}_{3} (which is given the standard inner product.)
(a) Find a basis for W^{\perp}.
(b) Write the vector $\mathbf{v}=(1,2,3)$ as $\mathbf{w}+\mathbf{u}$ with \mathbf{w} in W and \mathbf{u} in W^{\perp}.
5. Let

$$
A=\left[\begin{array}{lll}
3 & 0 & 0 \\
1 & 3 & 1 \\
5 & 1 & 3
\end{array}\right]
$$

(a) Compute the eigenvalues of A.
(b) Is A diagonalizable? (Justify your answer.)
6. Let

$$
A=\left[\begin{array}{ll}
4 & -3 \\
5 & -4
\end{array}\right]
$$

(a) Find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
(b) Compute A^{12}.
7. Consider the system of differential equations:

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{rrr}
2 & -1 & 1 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

You are given that the matrix

$$
\left[\begin{array}{rrr}
2 & -1 & 1 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

has two eigenvalues namely 2 and 1 . The eigenspace of the eigenvalue 2 is spanned by

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

The eigenspace of the the eigenvalue 1 is spanned by

$$
\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

(a) Find the general solution.
(b) Find the solution to the initial value problem determined by $x_{1}(0)=1$, $x_{2}(0)=2$ and $x_{3}(0)=3$.
8. Let A and B be two $n \times n$ matrices. Suppose that B is similar to A which means that $B=P^{-1} A P$ for some nonsingular $n \times n$ matrix P. Show that
(a) if $\operatorname{det}(A) \neq 0$, then $\operatorname{det}(B) \neq 0$;
(b) if A^{-1} exists, then B^{-1} exists and is similar to A^{-1}.

Part II: (Multiple Choice)

Circle the correct answer.

1. Assume that x, y, z satisfy

$$
\begin{array}{r}
2 x+a y+3 z=a \\
5 x+b y-z=b \\
x+c y+z=c
\end{array}
$$

where

$$
\operatorname{det}\left[\begin{array}{ccc}
2 & a & 3 \\
5 & b & -1 \\
1 & c & 1
\end{array}\right] \neq 0
$$

The value of x is
A. $-b+17 c-6 a$
B. $5 /(-b+17 c-6 a)$
C. 0
D. 1
E. $2 b-5 a$
2. Let A be 6×3 matrix such that its null space is spanned by

$$
\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\right]
$$

The rank of A is
A. 1
B. 2
C. 3
D. 4
E. 5
3. Let A be a 3×1 matrix. Let B be a 2×3 matrix. Let C be a 2×1 matrix. Which of the following matrices is well defined and is a 1×2 matrix.
A. $A B$
B. $B^{T} C$
C. $C^{T} B A$
D. $B A C^{T}$
E. $(B A)^{T}$
4. The dimension of the subspace of M_{22} consisting of vectors

$$
\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]
$$

satisfying

$$
\begin{gathered}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 \\
3 x_{1}+6 x_{2}+9 x_{3}+12 x_{4}=0
\end{gathered}
$$

is
A. 0 .
B. 1 .
C. 2 .
D. 3 .
E. 4 .
5. Let A be an $n \times n$ nonsingular matrix. Which condition fails?
E. 0 is an eigenvalue of A.
B. $\operatorname{det}(A) \neq 0$.
C. The rank of A is n.
D. A^{T} is nonsingular.
A. A^{2} is nonsingular.
6. Let V be an inner product space and let \mathbf{u} and \mathbf{v} be two unit vectors which are perpendicular to each other. Then the value of $(3 \mathbf{u}-4 \mathbf{v}, \mathbf{u}+5 \mathbf{v})$ is
A. 17
B. -17
C. 3
D. 20
E. -60
7. Let a be a real number different from $-1,0$ or 1 , and let $A=\left[\begin{array}{ll}1 & a \\ a & 1\end{array}\right]$. Which of the following vectors is an eigenvector for A ?
A. $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
B. $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
C. $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
D. $\left[\begin{array}{l}1 \\ a\end{array}\right]$
E. $\left[\begin{array}{l}a \\ 1\end{array}\right]$
8. Which vector is in the orthogonal complement of the span of

$$
\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{c}
-2 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right]
$$

A. $\left[\begin{array}{r}5 \\ -3 \\ 8\end{array}\right]$.
B. $\left[\begin{array}{r}-10 \\ 2 \\ 7\end{array}\right]$.
C. $\left[\begin{array}{l}2 \\ 3 \\ 2\end{array}\right]$.
D. $\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$.
E. $\left[\begin{array}{r}4 \\ -1 \\ 6\end{array}\right]$.
9. Which of the following transformations from \mathbb{R}^{3} to \mathbb{R}^{2} is not linear?
A. $L\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$
B. $L\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 x \\ 0\end{array}\right]$
C. $L\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}x y \\ x+y\end{array}\right]$
D. $L\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 y \\ x+y\end{array}\right]$
E. $L\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
10. Which of the given subsets of \mathbb{R}^{3} is a subspace?
A. The set of all vectors of the form $\left[\begin{array}{l}a \\ b \\ 1\end{array}\right]$.
B. The set of all vectors of the form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$, where $a \geq 0$.
C. The set of vectors of the form $\left[\begin{array}{c}a \\ a^{2} \\ a^{3}\end{array}\right]$.
D. The set of all vectors of the form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$, where $a>b+c$.
E. The set of all vectors of the form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$, where $2 a-b+c=a$.
11. Let $A=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right]$. Then A^{5} is equal to
A. $-A$
B. A^{2}
C. $-A^{2}$
D. A^{3}
E. $-A^{3}$
12. Suppose that A and B are two 3×3 matrices satisfying $\operatorname{det}(A)=9$ and $B^{2}=A$. Determine the value of $\operatorname{det}\left(2 A B^{T} A^{-1} B\right)$.
A. 18 .
B. 72 .
C. 2 .
D. 8 .
E. 162 .

