MATH 265 FINAL EXAM

Name and ID:

Instructor:

Section or class time:

Instructions: Calculators are not allowed. There are 8 problems in the first part worth 13 points each. There are 12 problems in the second part worth 8 points each. The total is 200 points.

1		
2		
3		
4		
5		
6		
7		
8		
9	х	
10	х	
11	х	
12	Х	

Part I

You must show all work for problems in first part.

1. Let

$$A = \left[\begin{array}{cc} 0 & a \\ b & c \end{array} \right]$$

- (a) Find conditions on a, b and c such that A is symmetric.
- (b) Find conditions on a, b and c such that A has an inverse.
- (c) Find conditions on a, b and c such that A satisfies $A^2 = 0$.

2. Consider a linear system whose augmented matrix is of the form

$$\begin{bmatrix} 0 & t-7 & 0 & | & 6 \\ 0 & 2 & 2t-2 & | & -2 \\ 1 & -1 & -2 & | & 1 \end{bmatrix}$$

- (a) For what values of t will the system have no solutions?
- (b) For what values of t will the system have infinitely many solutions?

3. Find a basis for the subspace of \mathbb{R}^4 spanned by

$$\mathbf{v}_{1} = \begin{bmatrix} 0\\2\\3\\0 \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} 1\\0\\-3\\1 \end{bmatrix}, \ \mathbf{v}_{4} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}.$$

- 4. Let W be the span of (1, 0, 2) and (0, 1, 0) in \mathbb{R}_3 (which is given the standard inner product.)
 - (a) Find a basis for W^{\perp} .
 - (b) Write the vector $\mathbf{v} = (1, 2, 3)$ as $\mathbf{w} + \mathbf{u}$ with \mathbf{w} in W and \mathbf{u} in W^{\perp} .

5. Let

$$A = \left[\begin{array}{rrrr} 3 & 0 & 0 \\ 1 & 3 & 1 \\ 5 & 1 & 3 \end{array} \right]$$

(a) Compute the eigenvalues of A.

(b) Is A diagonalizable? (Justify your answer.)

6. Let

$$A = \left[\begin{array}{cc} 4 & -3 \\ 5 & -4 \end{array} \right].$$

(a) Find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

(b) Compute A^{12} .

7. Consider the system of differential equations:

$$\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

You are given that the matrix

$$\left[\begin{array}{rrrr} 2 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{array}\right]$$

has two eigenvalues namely 2 and 1. The eigenspace of the eigenvalue 2 is spanned by

$$\left[\begin{array}{c}1\\0\\0\end{array}\right] \quad \text{and} \quad \left[\begin{array}{c}0\\1\\1\end{array}\right].$$

The eigenspace of the the eigenvalue 1 is spanned by

$$\left[\begin{array}{c}1\\0\\-1\end{array}\right].$$

- (a) Find the general solution.
- (b) Find the solution to the initial value problem determined by $x_1(0) = 1$, $x_2(0) = 2$ and $x_3(0) = 3$.

- 8. Let A and B be two $n \times n$ matrices. Suppose that B is similar to A which means that $B = P^{-1}AP$ for some nonsingular $n \times n$ matrix P. Show that
 - (a) if $det(A) \neq 0$, then $det(B) \neq 0$;
 - (b) if A^{-1} exists, then B^{-1} exists and is similar to A^{-1} .

Part II: (Multiple Choice)

Circle the correct answer.

1. Assume that
$$x, y, z$$
 satisfy

where

$$\det \begin{bmatrix} 2 & a & 3\\ 5 & b & -1\\ 1 & c & 1 \end{bmatrix} \neq 0$$

The value of x is

A. -b + 17c - 6aB. 5/(-b + 17c - 6a)C. 0 D. 1 E. 2b - 5a 2. Let A be 6×3 matrix such that its null space is spanned by

1		$\boxed{2}$		[3]
2	,	1	,	3
0		0		$\begin{bmatrix} 0 \end{bmatrix}$

The rank of A is

A. 1

B. 2

C. 3

D. 4

E. 5

- 3. Let A be a 3×1 matrix. Let B be a 2×3 matrix. Let C be a 2×1 matrix. Which of the following matrices is well defined and is a 1×2 matrix.
 - A. AB
 - B. $B^T C$
 - C. $C^T B A$
 - D. BAC^T
 - E. $(BA)^T$

4. The dimension of the subspace of M_{22} consisting of vectors

$$\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$

satisfying

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 0$$
$$3x_1 + 6x_2 + 9x_3 + 12x_4 = 0$$

is

A. 0.
B. 1.
C. 2.
D. 3.
E. 4.

- 5. Let A be an $n \times n$ nonsingular matrix. Which condition fails?
 - E. 0 is an eigenvalue of A.
 - B. $det(A) \neq 0$.
 - C. The rank of A is n.
 - D. A^T is nonsingular.
 - A. A^2 is nonsingular.

- 6. Let V be an inner product space and let **u** and **v** be two unit vectors which are perpendicular to each other. Then the value of $(3\mathbf{u} 4\mathbf{v}, \mathbf{u} + 5\mathbf{v})$ is
 - A. 17
 - В. –17
 - C. 3
 - D. 20
 - E. -60

7. Let *a* be a real number different from -1, 0 or 1, and let $A = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix}$. Which of the following vectors is an eigenvector for *A*?

8. Which vector is in the orthogonal complement of the span of

$$\begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} -2\\3\\-1 \end{bmatrix}, \begin{bmatrix} 2\\2\\6 \end{bmatrix}$$

9. Which of the following transformations from \mathbb{R}^3 to \mathbb{R}^2 is **not** linear?

A.
$$L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

B. $L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x \\ 0 \end{bmatrix}$
C. $L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} xy \\ x+y \end{bmatrix}$
D. $L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2y \\ x+y \end{bmatrix}$
E. $L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

10. Which of the given subsets of \mathbb{R}^3 is a subspace?

A. The set of all vectors of the form
$$\begin{bmatrix} a \\ b \\ 1 \end{bmatrix}$$
.
B. The set of all vectors of the form $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$, where $a \ge 0$.
C. The set of vectors of the form $\begin{bmatrix} a \\ a^2 \\ a^3 \end{bmatrix}$.
D. The set of all vectors of the form $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$, where $a > b + c$.
E. The set of all vectors of the form $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$, where $2a - b + c = a$.

11. Let
$$A = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$$
. Then A^5 is equal to
A. $-A$
B. A^2
C. $-A^2$
D. A^3
E. $-A^3$

- 12. Suppose that A and B are two 3×3 matrices satisfying det(A) = 9 and $B^2 = A$. Determine the value of det $(2AB^TA^{-1}B)$.
 - A. 18.
 - B. 72.
 - C. 2.
 - D. 8.
 - E. 162.