Math 265 Linear Algebra

Final Exam

Fall 2000

Student Name (print):

Student ID:

Circle the name of your instructor (with the time of your class):

Ban

Dugger

Gottlieb

Stefanov

Hulanicki (1:30)

Hulanicki (2:30)

Matsuki (12:30)

Matsuki (1:30)

Pascovici (8:30)

Pascovici (9:30)

Shipley (10:30)

Shipley (3:00)

Włodarczyk (9:00)

Włodarczyk (10:30)

Do not write below this line.

Please be neat and show all work.

Write each answer in the provided box.

Use the back of the sheets and the last 3 pages for extra scratch space.

Return this entire booklet to your instructor.

No books. No notes. No calculators.

Problem #	Max pts.	Earned points
1	20	
2	8	
3	8	
4	8	
5	8	
6	8	
7	8	
8	8	
9	8	
10	8	
11	8	
Section I	100	

12	10	
13	10	
14	10	
15	10	
Section II	40	
16	20	
17	20	
18	20	
Section III	60	
TOTAL	200	

Section I: Short problems

No partial credit on this part, but show all your work anyway. It might help you if you come close to a borderline. Please be neat. Write your answer in the provided box.

- - (a) Find the rank of A.

(b) Find the nullity of A.

(c) Find a basis for the column space of A.

(d) Find a basis for the row space of A.

(e) Find a basis for the null space of A.

2. Let $A = \begin{bmatrix} 8 & x \\ 3 & 5 \end{bmatrix}$ be a 2×2 matrix and let $B = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$. Determine the value(s) of x so that AB = BA.

3. Let $L:\mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation such that

$$L\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\-1\\3\end{bmatrix}, L\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}-2\\1\\-1\end{bmatrix}.$$

Find $L\left(\begin{bmatrix}1\\2\end{bmatrix}\right)$.

4. Determine the value(s) of a so that the line whose parametric equations are given by

$$\begin{cases} x = 2 + 3t \\ y = 3 - t \\ z = 1 + at \end{cases}$$

and the plane

$$2x - y + z + 3 = 0$$

do NOT intersect.

5. Find the value(s) of k for which the vector $v = \begin{bmatrix} 1 \\ 6 \\ k \end{bmatrix}$ is in the space spanned by

$$\left\{v_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\-2\\3 \end{bmatrix}, v_3 = \begin{bmatrix} 4\\4\\12 \end{bmatrix}\right\}.$$

		- 1
		- 1
		- 1
		- 1
		- 1

6. Compute the inverse of the matrix $A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$.

7. E is a 3×3 matrix of the form

$$E = \begin{bmatrix} 0 & 1 & 1 \\ x & y & z \\ 3 & 5 & 7 \end{bmatrix}.$$

Given det(E) = 3, compute the determinant of the following matrix

$$F = \begin{bmatrix} x & y & z \\ 0 & 1 & 1 \\ 6+3x & 10+3y & 14+3z \end{bmatrix}$$

8. Find a diagonal matrix similar to $A = \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix}$.

9. Find the projection $\operatorname{Proj}_{W}v$ of the vector $v = \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix}$ onto the subspace W spanned by

$$\left\{ v_1 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}.$$

10. Let v and w be two vectors in \mathbb{R}^5 such that $v \cdot v = 4, w \cdot w = 9$ and $v \cdot w = 1$. Find the cosine of the angle between v and w.

11. We have a subspace W in \mathbb{R}^4 spanned by the following three linearly independent vectors

$$\left\{u_1 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, u_2 = \begin{bmatrix} -1\\0\\1\\-1 \end{bmatrix}, u_3 = \begin{bmatrix} -1\\0\\0\\-1 \end{bmatrix}\right\}.$$

Find an orthonormal basis of W.

_		 		
1				
1				
١				
١				
١				
١				
ł				
1				
1				
١				
1				
ı				
١				
١				
ı				
1				
1				
-				
ł				
١				
1				
1				

Section II: Multiple choice problems

For Problems 12 through 15, circle only one (the correct) answer for each part. No partial credit.

- 12. Let A be a 3×5 matrix with rank(A) = 2. Determine if each of the following statements is true or false.
 - (a) For some b, the system Ax = b has a unique solution.

True False

- (b) If the rank of the augmented matrix $[A \ \mathbf{b}]$ is also 2, then the system $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- (c) If the rank of the augmented matrix $[A \ \mathbf{b}]$ is 3, then the system $A\mathbf{x} = \mathbf{b}$ has no solution.
- (d) The system $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is in the column space of A.

True False

(e) The null space of A has dimension 2.

True False

- 13. Determine if each of the following statements is true or false, where A is a 3×3 matrix.
 - (a) If 2 is an eigenvalue for A, then $2I_3 A$ is singular.

True False

(b) If $A^2 = A$, then det(A) = 0 or 1.

True False

(c) det(kA) = k det(A) for any scalar k.

True False

(d) If the characteristic polynomial of A has roots 1, 2 and 3, then A is diagonalizable.

True False

(e) If A is nonsingular, then none of the eigenvalues of A is 0.

True False

- 14. For each of the following sets, determine if it is a vector (sub)space:
 - (a) The set of all vectors (x_1, x_2, x_3, x_4) in \mathbb{R}^4 with the property $x_1 x_2 + x_3 x_4 = 0$; Yes No
 - (b) The set of all vectors (x_1, x_2, x_3, x_4) in \mathbb{R}^4 with the property $x_1x_2 x_3x_4 = 0$; Yes No
 - (c) The set of all vectors $v=(x_1,x_2,x_3)$ in \mathbb{R}^3 with length being equal to 1; Yes No
 - (d) The set of all vectors of the form v=(a+b,2a+3c,b-c,a+b+c) in \mathbb{R}^4 where a,b and c are arbitrary real numbers;
 - (e) The set of all solutions to the linear system of differential equations $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$ where $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$;

Yes No

15. For the problems (a), (b) and (c), determine if the given set of vectors is linearly independent or linearly dependent:

(a)
$$\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\};$$

Independent

Dependent

(b)
$$\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\3 \end{bmatrix} \right\};$$

Independent

Dependent

(c)
$$\left\{ \begin{bmatrix} 1\\-7\\5 \end{bmatrix}, \begin{bmatrix} 5\\2\\11 \end{bmatrix}, \begin{bmatrix} 0\\1\\-3 \end{bmatrix}, \begin{bmatrix} 3\\0\\6 \end{bmatrix} \right\};$$

Independent

Dependent

For the problems (d) and (e), determine if the given set of vectors spans \mathbb{R}^3 :

(d)
$$\left\{ \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1 \end{bmatrix} \right\};$$

span not span

(e)
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\};$$

span not span

Section III: Multi-Step problems

Show all work (no work - no credit!) and display computing steps. Write clearly.

16. Find the least squares fit line for the points

$$(-1,3), (0,2), (1,4).$$

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

be the linear system of differential equations where

$$A = \begin{bmatrix} 1 & -2 \\ 4 & 5 \end{bmatrix}.$$

(a) Find the eigenvalues and find an eigenvector for each eigenvalue for A.

Note: The eigenvalues are COMPLEX-valued.

b)	Find	the	general	REAL	solution	to	the	linear	syste	em o	f diffe	erentia	l equa	tions.	
					l										

18. Let

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \\ \frac{dt}{dx_3} \end{bmatrix} = B \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

be the linear system of differential equations where

$$B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 3 & 0 & 2 \end{bmatrix}.$$

(a) Find the eigenvalues and find an eigenvector for each eigenvalue for B.

(p)	Find	the	general	solution	to the	linear	system	of di	ifferentia	l equati	ons	