MATH 265 Second Midterm Examination, November 13, 2007 Copyright 2007, Clarence Wilkerson All rights reserved	Name : PUID :
---	------------------

No books, notes, or calculators allowed. Please be neat and show all your work on these pages (use back of pages if necessary). Return all these pages. Work must be shown for full credit.

Problem	Possible	Points
Number	Points	Earned
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

1. The plane W has an orthogonal basis
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$. Let $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

a) Find the projection of b onto W, $proj_W(b)$. (8 points)

Since
$$u_1 \circ u_2 = 0$$

 $P^{roj}(b) = \frac{(b_1u_1)}{(u_1,u_1)} u_1 + \frac{(b_1u_2)}{(u_2,u_2)} u_2$
 $= \frac{4}{2} \left[0 \right] + \frac{0}{3} \left[-1 \right] = \left[\frac{7}{2} \right]$

b) Find the distance from b to W. (7 points).

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1
\end{bmatrix} = \begin{bmatrix}
2 & 1 & 1 \\
2 & 3 & 2
\end{bmatrix} = \begin{bmatrix}
2 & 1 & 1 \\
2 & 3 & 2
\end{bmatrix}$$

$$= \begin{bmatrix}
2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1
\end{bmatrix} = \begin{bmatrix}
2 & 1 & 2 & 1 \\
2 & 3 & 2 & 2
\end{bmatrix}$$

$$= \begin{bmatrix}
2 & 1 & 2 & 1 & 2 \\
2 & 1 & 2 & 1 & 2
\end{bmatrix}$$

c) Find a basis for the orthogonal complement of W, W¹.

Scinca dim W = 2, dum wh = 1

B - Projuctor is I to (w), 50 b - Projuctor

So it is a basis

So it is a basis

Le [2] is a basis for the orthogonal complement of W, W¹.

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W = 2, dum wh = 1

Scinca dim W =

2. The 4×4 matrix

$$A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 3 & 3 \\ 5 & 5 & 5 & 5 \end{bmatrix}$$

has a row echelon form of

$$B = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Eli 22], [o o [i], so this is a book of soul

and dein Roes B = dein Roes A = 2 are expans,

so any 2 indep roces of A are expans,

ey [1] 22], [22] [1] **1**

b) (10 points) Find a basis for the subvector space $Col(A) \subset \mathbb{R}^4$. Justify your answer.

leading 15 in row chi form B are in basis, cols 163, 50 col, 1638 A are a basis, [3] a do coliers to A (not B!).

3. The matrix A from problem 2 above has reduced row echelon form

$$C = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

a) (12 points) Give a basis for the null space, Null(A), the set of solutions to the homogeneous equation $A\mathbf{x} = 0$.

comogeneous equation
$$Ax = 0$$
.

Let $X = -X_2$ for $X_1 + X_2 = 0$, $X_3 + X_4 = 0$, so

 $X_1 = -X_2$ for $X_3 = -X_4$

Let $X = X_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + X_3 \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

are abouts

b)(8 points) Give a basis for the orthogonal complement $Row(A)^{\perp}$, with respect to the usual dot product in \mathbb{R}_4 . Explain your answer.

4. Let

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 0 & -1 \\ -1 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 5 \end{bmatrix}.$$

Notice that **b** is not in the column space of **A**, so there is no exact solution to $A\mathbf{x} = \mathbf{b}$.

a) Find the least squares solution y to Ay = b. Hint: multiply on the left by A^T , then solve for y. (15 points)

b) Find the error,
$$||Ay - b|| \cdot (5 \text{ points})$$
.

Over = $||Ay - b|| = ||\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} - \begin{bmatrix} 3 \\ 1 \\ 25 \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \\ -3 \end{bmatrix}$

= $||Ay - b|| = ||Ay - b|| = ||$

5. a) (10 points) Prove or disprove:
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 is in the span of $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.

b) (10 points) Prove or disprove: the vectors $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ are linearly independent

b) (10 points) Prove or disprove: the vectors
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ are linearly independent in \mathbb{R}^3 .

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
So $3 = 2u_2 - u_1 = 2\begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 - 1 \\ 2 - 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
So Not independent