Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo
(First)
(Last)

Name:
Div 2
(Print)
Koslowski

Some useful formulas

$\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-\nu\left(\sigma_{x}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]+\alpha \Delta T$
$\gamma_{x y}=\frac{1}{G} \tau_{x y} \quad \gamma_{x z}=\frac{1}{G} \tau_{x z} \quad \gamma_{y z}=\frac{1}{G} \tau_{y z}$
$F S=\frac{\text { Failure Stress }}{\text { Allowable Stress }}$
$e=\frac{F L}{E A}+L \alpha \Delta T$
$\tau=\frac{T \rho}{J}$
$\tau=G \frac{\phi r}{L}$
$\phi=\frac{T L}{G J}$
$J_{\text {solid }}=\frac{\pi d^{4}}{32}$
$J_{\text {hollow }}=\frac{\pi\left(d_{o}{ }^{4}-d_{i}^{4}\right)}{32}$
$\sigma=-\frac{M y}{I}$
$\tau=\frac{V Q}{I t} ; \quad Q=A^{\prime} \bar{y}^{\prime}$
$I_{\text {rectangle }}=\frac{1}{12} b h^{3}$
$I_{\text {circle }}=\frac{\pi}{4} r^{4}$
Centroid of a semicicle $=\bar{y}=\frac{4 r}{3 \pi}$

Susilo

$$
\begin{aligned}
& \sigma_{a}=\frac{p r}{2 t} \\
& \sigma_{h}=\frac{p r}{t} \\
& \sigma_{\text {sphere }}=\frac{p r}{2 t}
\end{aligned}
$$

$$
\sigma_{a r g}=\left(\frac{\sigma_{x}+\sigma_{y}}{2}\right) \quad R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

$$
\begin{aligned}
& E L v^{n \prime}=M \\
& \left(E V^{\prime \prime}\right)^{\prime}=V \\
& \left(E V^{\prime \prime}\right)^{n}=p \\
& \langle x-a\rangle^{n}=\left\{\begin{array}{cc}
0 & \text { for } x<a \\
(x-a)^{n} & \text { for } x \geq a
\end{array}\right\} n=0,1,2,3 \ldots \\
& \int\langle x-a\rangle^{n} d x=\left\{\begin{array}{cc}
\langle x-a\rangle^{n+1} & \text { fom } \leq 0 \\
\frac{1}{n+1}\langle x-a\rangle^{n+1} & \text { foom } \geq 0
\end{array}\right\} \\
& \sigma_{M}=\frac{\sqrt{2}}{2}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{1}-\sigma_{3}\right)^{2}\right]^{1 / 2} \\
& P_{c r}=\frac{\pi^{2} E I}{L_{e}{ }^{2}} \quad \sigma_{a r}=\frac{\pi^{2} E}{\left(L_{e} / r\right)^{2}}
\end{aligned}
$$

Name: \qquad
Div 2
(Print)
(Last)
Koslowski
PROBLEM \#1 (30 points)

Division: Div 1

(Circle)

Susilo

A sign of weight W is supported by a pipe with outer diameter D and inner diameter d, For a wind load of P, determine the stress in the base at points A and B. Plot the stress in a properly oriented stress element.

$D=125 \mathrm{~mm}, \mathrm{~d}=100 \mathrm{~mm}, \mathrm{P}=2 \mathrm{kN}, \mathrm{W}=1 \mathrm{kN}$

Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo

Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo

Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo

Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo

Name:
Div 2
(Print)
Koslowski
(Circle) Susilo

PROBLEM \#2 (30 points)

A distributed load $\boldsymbol{w}_{\boldsymbol{o}}=3000 \mathrm{~N} / \mathrm{m}$ were applied to the beam as shown in the diagram. The beam is fixed at \mathbf{A} and \mathbf{B}.

If $E=200 \mathrm{GPa}$ and $I=35 \times 10^{-6} \mathrm{~m}^{4}$, find:
a. the support reactions
b. the maximum deflection of the beam

Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo

Name:
Div 2
(Print)
Koslowski
(First)
(Circle)

PROBLEM \#3 (20 points)

1. A cubic block of unit length made of linearly elastic material (E, v) is compressed between two rigid, perfectly smooth surfaces by an applied stress $\sigma_{x}=-\sigma_{0}$ as shown in the figure below. The only other non-zero stress is the stress σ_{y} induced by the restraining surfaces at $y=0$ and $y=1$. Determine the value of the restraining stress σ_{y}. Also, determine the change in the x and z dimensions of the block.

2. A stiff beam $B C$ is supported by two identical columns whose flexural rigidity is EI. Assuming that the columns are prevented from rotating at either end estimate the maximum weight W that the system can hold before buckling.

Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo

Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo

Name:
Div 2
(Print)
Koslowski

Division: Div 1

(Circle)

PROBLEM \#4 (20 points)

At a certain point in a member subjected to a plane stress, the stresses σ_{x}, σ_{y} and $\tau_{x y}$ have the values shown in the figure below.
a. Construct the Mohr's circle of stress.
b. Determine the principle stresses.
c. Determine the maximum shear stress.
d. Show the principal stresses in a properly oriented stress element.

Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo

Name:
Div 2
(Print)
Koslowski

Division: Div 1
(Circle) Susilo

