Name: \qquad
(Print) (Last) \quad (First)

Division: Div 1 Div 2 (Circle) Susilo Koslowski

ME 323 Final
 Spring 2011
 8:00 AM - 10:00 AM

Instructions

1. Work each problem in the space provided.
2. Confine your work to the front side of the pages only.
3. Additional paper will be provided upon request.
4. To obtain maximum credit for a problem, you must present your solution clearly. Accordingly:
a. Identify coordinate systems
b. Sketch free body diagrams
c. State units explicitly
d. Clarify your approach to the problem including assumptions
e. Clearly mark final answers with boxes
5. If your solution cannot be followed, it will be assumed that it is in error.

Prob. 1 \qquad

Prob. 2 \qquad

Prob. 3 \qquad

Prob. 4 \qquad

Total \qquad

Name:
(Print) \qquad (First)
Division: Div 1
Div 2 (Circle) Susilo Koslowski

Some useful formulas

$\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]+\alpha \Delta T$
$\gamma_{x y}=\frac{1}{G} \tau_{x y} \quad \gamma_{x z}=\frac{1}{G} \tau_{x z} \quad \gamma_{y z}=\frac{1}{G} \tau_{y z}$
$F S=\frac{\text { Failure Stress }}{\text { Allowable Stress }}$
$e=\frac{F L}{E A}+L \alpha \Delta T$
$\tau=\frac{T \rho}{J}$
$\tau=G \frac{\phi r}{L}$
$\phi=\frac{T L}{G J}$
$J_{\text {solid }}=\frac{\pi d^{4}}{32}$
$J_{\text {hollow }}=\frac{\pi\left(d_{o}{ }^{4}-d_{i}{ }^{4}\right)}{32}$
$\sigma=-\frac{M y}{I}$
$\tau=\frac{V Q}{I t} ; \quad Q=A^{\prime} \bar{y}^{\prime}$
$I_{\text {rectangle }}=\frac{1}{12} b h^{3}$
$I_{\text {circle }}=\frac{\pi}{4} r^{4}$
Centroid of a semicicle $=\bar{y}=\frac{4 r}{3 \pi}$
$\sigma_{a}=\frac{p r}{2 t}$
$\sigma_{h}=\frac{p r}{t}$
$\sigma_{\text {sphere }}=\frac{p r}{2 t}$
$\sigma_{a r g}=\left(\frac{\sigma_{x}+\sigma_{y}}{2}\right) \quad R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}$

$$
E L v^{n}=M
$$

$$
\left(E V^{\prime \prime}\right)^{\prime}=V
$$

$$
\left(E L v^{\prime \prime}\right)^{\prime \prime}=p
$$

$$
\langle x-a\rangle^{n}=\left\{\begin{array}{cc}
0 & \text { for } x<a \\
(x-a)^{n} & \text { for } \text { or } \geq a
\end{array}\right\} n=0,1,2,3 \ldots
$$

$$
\int\langle x-a\rangle^{n} d x=\left\{\begin{array}{ll}
\langle x-a\rangle^{n+1} & \text { fom } \leq 0 \\
\frac{1}{n+1}\langle x-a\rangle^{n+1} & \text { fom } \geq 0
\end{array}\right\}
$$

$$
\sigma_{M}=\frac{\sqrt{2}}{2}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{1}-\sigma_{3}\right)^{2}\right]^{12}
$$

$$
P_{c r}=\frac{\pi^{2} E I}{L_{e}{ }^{2}} \quad \sigma_{c r}=\frac{\pi^{2} E}{\left(L_{e} / r\right)^{2}}
$$

Name:
(Print)
\qquad
\square
(First)
Division: Div 1
Div 2
(Circle) Susilo Koslowski

PROBLEM \#1 (30 points)
A point moment $\boldsymbol{M}_{\boldsymbol{o}}=3000 \mathrm{Nm}$ were applied to the beam as shown in the diagram. The beam is fixed at \mathbf{A} and pinned at \mathbf{B}.

If $E=200 \mathrm{GPa}$ and $I=35 \times 10^{-6} \mathrm{~m}^{4}$, find:
a. the support reactions
b. the deflection at \mathbf{C}

Name:
(Print)
(Last)
(First)
Division: Div 1
Div 2
(Circle) Susilo Koslowski

Name:
(Print)
(Last)
(First)
Division: Div 1
Div 2
(Circle) Susilo Koslowski

Name: \qquad
(Print) \qquad
(Last)
(First)
Division:
Div 1

PROBLEM \#2 (20 points)

1. A cubic block of unit length made of linearly elastic material and having a thermal expansion coefficient α is constrained on all its four sides in the xy plane as shown in the figure below. It is free to expand only in the z direction. The block is uniformly heated to increase its temperature by $\Delta \mathrm{T}$. The block is initially stress-free. Determine the dimensions in the three directions of the block after the rise in temperature.

2. Determine the maximum load P (applied at 1 ft to the right of A) that can be applied to the $\operatorname{bar}\left(E=2910^{3} \mathrm{ksi}\right)$ so that the strut $A B$ does not buckle. The strut has radius $r=1 \mathrm{in}$. and it is pin connected to the ends.

Name:
(Print)
(Last)
(First)
Division: Div 1
Div 2
(Circle) Susilo Koslowski

Name:
(Print)
(Last)
(First)
Division: Div 1
Div 2
(Circle) Susilo Koslowski

Name:
(Print)
\qquad (Last) (First)

Division:
Div 1 Div 2 (Circle) Susilo Koslowski

PROBLEM \#3 (30 points)

The bracket shown in the figure below is acted upon by a load of $P=20 \mathrm{kN}$. Calculate the stresses in A and B and show your results in a properly oriented stress element.

Name:
(Print)
(Last)
(First)
$\begin{array}{lr}\text { Division: } & \text { Div } 1 \\ \text { (Circle) } & \text { Susilo }\end{array}$
Div 2
(Circle) Susilo Koslowski

Name:
(Print)
(Last)
(First)
Division: Div 1
Div 2
(Circle) Susilo Koslowski

Name:
(Print)
(Last)
(First)
Division: Div 1
Div 2
(Circle) Susilo Koslowski

Name:
(Print)
\qquad
(Last)
(First)
Division:
Div 1

PROBLEM \#4 (20 points)

At a certain point in a member subjected to a plane stress, the stresses σ_{x}, σ_{y} and $\tau_{x y}$ have the values shown in the figure below.
a. Construct the Mohr's circle of stress.
b. Determine the principle stresses.
c. Determine the maximum shear stress.
d. Show the principal stresses in a properly oriented stress element.

Name:
(Print)
(Last)
(First)
$\begin{array}{lr}\text { Division: } & \text { Div } 1 \\ \text { (Circle) } & \text { Susilo }\end{array}$
Div 2
(Circle) Susilo Koslowski

Name:
(Print)
(Last)
(First)
Division: Div 1
Div 2
(Circle) Susilo Koslowski

