Rao

# ME 323 FINAL EXAM Spring 2008 7:00 PM – 9:00 PM

# Instructions

- 1. Work each problem in the space provided.
- 2. Confine your work to the front side of the pages only.
- 3. Additional paper will be provided upon request.
- 4. To obtain maximum credit, you must present your solutions clearly. Accordingly:
  - a. Identify coordinate systems
  - b. Sketch free body diagrams
  - c. State units explicitly
  - d. Clarify your approach to the problem, including assumptions

#### e. Clearly mark final answers with boxes

5. If your solution cannot be followed, it will be assumed that it is in error.

| / |         |   |
|---|---------|---|
|   | Prob. 1 | ١ |
|   | Prob. 2 |   |
|   | Prob. 3 |   |
|   | Prob. 4 |   |
|   | Total   |   |
|   |         |   |

Name: \_\_\_\_\_ Rao Koslowski Instructor: (Last) (First) (Print) (Circle one) Some useful formulas  $\sigma_{n} = \left(\frac{\sigma_{x} + \sigma_{y}}{2}\right) + \left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)\cos 2\theta + \tau_{xy}\sin 2\theta$  $\varepsilon = \frac{\Delta L}{L} = \frac{L^* - L}{L}$  $\tau_{nt} = -\left(\frac{\sigma_x - \sigma_y}{2}\right)\sin 2\theta + \tau_{xy}\cos 2\theta$  $\varepsilon_{x} = \frac{l}{E} \left[ \sigma_{x} - \nu \left( \sigma_{y} + \sigma_{z} \right) \right] + \alpha \Delta T$  $\sigma_{avg} = \left(\frac{\sigma_x + \sigma_y}{2}\right) \qquad R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$  $\varepsilon_{y} = \frac{I}{E} \left[ \sigma_{y} - \nu (\sigma_{x} + \sigma_{z}) \right] + \alpha \Delta T$  $\sigma_{1,2} = \sigma_{avg} \pm R \qquad \qquad \tau_{s1,s2} = \pm R = \pm \tau_{max}$  $\varepsilon_{z} = \frac{1}{E} \left[ \sigma_{z} - \nu \left( \sigma_{x} + \sigma_{y} \right) \right] + \alpha \Delta T$  $\sigma_{s1,s2} = \sigma_{avg}$  $\gamma_{xy} = \frac{1}{C} \tau_{xy} \quad \gamma_{xz} = \frac{1}{C} \tau_{xz} \quad \gamma_{yz} = \frac{1}{C} \tau_{yz}$  $\tan 2\theta_p = \frac{\tau_{xy}}{\left(\frac{\sigma_x - \sigma_y}{2}\right)} \quad \tan 2\theta_s = \frac{-\left(\frac{\sigma_x - \sigma_y}{2}\right)}{\tau_{xy}}$  $FS = \frac{Failure \ Stress}{Allowable \ Stress}, \frac{Yield \ Strength}{State \ of \ Stress}$  $\sin 2\theta_{p1} = \frac{\tau_{xy}}{R}$   $\cos 2\theta_{p1} = \frac{\left(\frac{\sigma_x - \sigma_y}{2}\right)}{r}$  $e = \frac{FL}{EA} + L\alpha\Delta T$   $e = u\cos(\theta) + v\sin(\theta)$  $\tau = \frac{Tr}{I}$  $\phi = \frac{TL}{GI}$  $\sin 2\theta_{p2} = \frac{-\tau_{xy}}{R} \qquad \cos 2\theta_{p2} = \frac{-\left(\frac{\sigma_x - \sigma_y}{2}\right)}{R}$  $I_p = \frac{\pi d^4}{22}$  (solid circular cross section)  $I_{p} = \frac{\pi (d_{o}^{4} - d_{i}^{4})}{22} \quad (hollow circ. cross sect.)$  $\sin 2\theta_{sl} = \frac{-\left(\frac{\sigma_x - \sigma_y}{2}\right)}{cos 2\theta_{sl}} = \frac{\tau_{xy}}{p}$  $\sigma(x, y) = \frac{-E(x)y}{\rho(x)} = \frac{-M(x)y}{I}$  $\sigma_a = \frac{pr}{2t} \qquad \sigma_h = \frac{pr}{t} \qquad \sigma_{sphere} = \frac{pr}{2t}$  $I_{zz} = \frac{bh^3}{12}$  (rectangle)  $I_{zz} = \pi \frac{d^4}{64}$  (circle)  $\Delta_{i} = \frac{\partial U_{Total}}{\partial P_{i}} \qquad \theta_{i} = \frac{\partial U_{Total}}{\partial M_{i}} \qquad i = 1, 2, \dots$ EIv'' = M(EIv'')' = V $U_{Total} = \int_{0}^{L} \frac{F^{2}}{2AE} dx + \int_{0}^{L} \frac{T^{2}}{2GI_{P}} dx + \int_{0}^{L} \frac{M^{2}}{2EI} dx + \int_{0}^{L} \frac{f_{s}V^{2}}{2GA} dx$ (EIv'')'' = p $\langle x-a \rangle^n = \begin{cases} 0 & \text{for } x < a \\ (x-a)^n & \text{for } x \ge a \end{cases} \quad n = 0, 1, 2, 3... \\ \int \langle x-a \rangle^n dx = \begin{cases} \langle x-a \rangle^{n+1} & \text{for } n \le 0 \\ \frac{1}{n+1} \langle x-a \rangle^{n+1} & \text{for } n \ge 0 \end{cases} \quad \sigma_M = \frac{\sqrt{2}}{2} \left[ (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 \right]^{/2} \\ P_{cr} = \frac{\pi^2 E I}{L_c^2} & \sigma_{cr} = \frac{\pi^2 E}{(L_c/r)^2} \end{cases}$ 

ME 323 Final Exam, Spring 2008

| Name:   |        |         | Instructor:  | Rao | Koslowski |
|---------|--------|---------|--------------|-----|-----------|
| (Print) | (Last) | (First) | (Circle one) |     |           |

#### PROBLEM #1 (20 points)

The pictured planar truss **ABCD** with height h=2L/3 and span length *L* supports a downward vertical load **P** at joint **D**. If each member has axial rigidity **AE**, determine the following:

- a) The support reactions at A and C
- b) The internal resultant forces in all truss elements
- b) The vertical displacement of the joint **D** using energy methods



$$L_{BD} = \frac{2}{3}L$$

| Name:   |        |         | Instructor:  | Rao | Koslowski |
|---------|--------|---------|--------------|-----|-----------|
| (Print) | (Last) | (First) | (Circle one) |     |           |

| Name:   |        |         | Instructor:  | Rao | Koslowski |
|---------|--------|---------|--------------|-----|-----------|
| (Print) | (Last) | (First) | (Circle one) |     |           |

## PROBLEM #2 (30 points)

The pictured cantilever beam *AB* is clamped at end *A*, free at end *B*, and is reinforced at location *C* by rod *CD* (which is pinned at both ends). When load *P* is applied at point *B* the beam deflects downward at *C* thus developing a reactive tensile force *T* in rod *CD*. Relevant properties of the beam and rod are given in the table below.

|                   | Beam | Rod                 |
|-------------------|------|---------------------|
| Young modulus     | E    | E1                  |
| Moment of inertia | I    | <b>I</b> 1          |
| Area              | A    | A <sub>1</sub>      |
| Length            | L+a  | L <sub>1</sub>      |
|                   |      | $k = A_1 E_1 / L_1$ |



a) Plot the anticipated deflection curve in the space provided in the next page
b) Draw a free body diagram of the beam in the space provided in the next page
c) Write an expression for the force *T* as a function of *P*, *k*, *L*, *a*, *E*, and *I*

| Name:<br>(Print) | (Last) | (First) | (Circle one) | Rao | Koslowski |
|------------------|--------|---------|--------------|-----|-----------|
| (1 1111)         | (Last) | (11131) |              |     |           |
| a)<br>A          |        | С       |              | В   |           |
|                  |        |         |              |     |           |
|                  |        |         |              |     |           |
|                  |        |         |              |     | -•        |
|                  |        |         |              |     | x         |
|                  |        |         |              |     |           |
|                  |        |         |              |     |           |
|                  |        |         |              |     |           |
|                  |        |         |              |     |           |
|                  |        |         |              |     |           |



| Name:   |        |         | Instructor:  | Rao | Koslowski |
|---------|--------|---------|--------------|-----|-----------|
| (Print) | (Last) | (First) | (Circle one) |     |           |

| Name:   |        |         | Instructor:  | Rao | Koslowski |
|---------|--------|---------|--------------|-----|-----------|
| (Print) | (Last) | (First) | (Circle one) |     |           |

| Name:   |        |         | Instructor:  | Rao | Koslowski |
|---------|--------|---------|--------------|-----|-----------|
| (Print) | (Last) | (First) | (Circle one) |     |           |

### PROBLEM #3 (30 points)

The pictured section of a gas pipeline is rigidly fixed at **A** and is subjected to a **9** kN load in the -y direction at **C**. The outer diameter of the pipe is **200** mm and the inner diameter is **176** mm. If the internal pressurization in the pipeline is **1500** kPa, determine the following at point **H** (i.e. top of the cross section at point **B**):

A) The stress state

Provide all non-zero stress components for a material element in the **xyz** coordinate system shown in the figure

- B) The absolute maximum shear stress
- C) Whether the pipe will fail according to Von Mises Criterion, assuming the pipe is made of steel (yield strength = 250 MPa).



| Name:   |        |         | Instructor:  | Rao | Koslowski |
|---------|--------|---------|--------------|-----|-----------|
| (Print) | (Last) | (First) | (Circle one) |     |           |

| Name:   |        |         | Instructor:  | Rao | Koslowski |
|---------|--------|---------|--------------|-----|-----------|
| (Print) | (Last) | (First) | (Circle one) |     |           |

### PROBLEM #4 (20 points)

The rigid bar **ABC** shown below is attached to a rigid base by a pin joint at **C**. Bar **BD** is a pin-jointed rectangular cross section compression member that connects **ABC** and the base. If Member **BD** is made of aluminum (elastic modulus =  $10 \times 10^3 \text{ ksi}$ ; yield strength = 40 ksi) determine:

- A) The maximum load that can be applied at point **A** without causing buckling of **BD**
- B) Whether Euler buckling analysis is valid for Member **BD**



| Name:   |        |         | Instructor:  | Rao | Koslowski |
|---------|--------|---------|--------------|-----|-----------|
| (Print) | (Last) | (First) | (Circle one) |     |           |