ME 323 Final Examination

December 12, 2017

Name
Instructor

PROBLEM NO. 1-25 points max.
The right-angle bar ABC has a circular cross section of radius r. It is fixed at wall at A , and is subject to a concentrated force P at location C . The elastic modulus of the bar is E and shear modulus is G. Using Castigliano's theorem:
a) Determine the deflection of the bar in the z-direction at C .
b) Determine the deflection of the bar in the z-direction at B .

Ignore the shear energy due to bending. Express your answers in terms of P, L, E, G, and r.

P1: solution:
Apply a dummy force at $B: F_{B}$
$U_{\text {sta del }}=U_{A B}+U_{B C}$
For $A B$ section:

$$
\begin{aligned}
T(x) & =-P L \\
M(x) & =\left(P+F_{B}\right) x \\
U_{A B} & =\frac{1}{2} \int_{0}^{L} \frac{T^{2}(x)}{G I P} d x+\frac{1}{2} \int_{0}^{L} \frac{M^{2}(x)}{E I} d x \\
& =\frac{1}{2} \int_{0}^{L(P L)^{\prime}} \frac{1}{G I_{P}} d x-\frac{1}{2} \int_{0}^{L} \frac{[(P+F B) x]^{2}}{E I} d x
\end{aligned}
$$

For $B C$ section:

$$
\begin{aligned}
& M(x)=-p x \\
& U_{B C}=\frac{1}{2} \int_{0}^{L} \frac{M^{2}(x)}{E L} d x=\frac{1}{2} \int_{0}^{L} \frac{(p x)^{2}}{E 1} d x
\end{aligned}
$$

$$
\Delta C=\left.\frac{\partial U_{+0+a 1}}{\partial P}\right|_{E=0}=\frac{P L^{3}}{G I P}+\frac{\frac{1}{3} P L^{3}}{6 E I}+\frac{1}{3} \frac{P L^{3}}{E I}=\frac{P L^{3}}{62 P}+\frac{2}{3} \frac{P L^{3}}{E I}
$$

$\Delta_{B}=\left.\frac{\partial U_{\text {total }}}{\partial F_{B}}\right|_{F_{B}=0}=\frac{1}{3} \frac{P L^{3}}{E I}$

$$
I_{p}=\frac{\pi r^{4}}{2}, \quad I=\frac{\pi r^{4}}{4}
$$

December 12, 2017

PROBLEM NO. 2-25 points max.

A bracket is made up of components BC, DC and HC , all joined together at C , with BC, DC and HC aligned with the $\mathrm{x}-, \mathrm{y}$ - and z-axes, respectively. Loads of P and 2 P act at ends H and D in the negative y -direction and positive x -direction, respectively. Component BC has a circular cross section with an outer radius of r.
a) Determine the xyz components of stress at points "a" and "b" on the cross section K of component BC. Express your answers in terms of, at most, L, r and P.
b) Show these components of stress on the stress elements provided below for points "a" and "b".

Using: $I=\frac{\pi}{4} r^{4}, I_{P}=\frac{\pi}{2} r^{4}$ and $A=\pi r^{2}$, and the stress distributions above, we have:

Point " a "
$\sigma_{x}=\frac{M_{z} r}{I}+\frac{F_{x}}{A}=\frac{(3 P L) r}{\pi r^{4} / 4}+\frac{2 P}{\pi r^{2}}=\frac{2 P}{\pi r^{2}}\left[1+6 \frac{L}{r}\right]$
$\tau_{x z}=\frac{M_{x} r}{I_{P}}=\frac{(P L) r}{\pi r^{4} / 2}=\frac{2 P}{\pi r^{2}}\left(\frac{L}{r}\right)$
Point " b "
$\sigma_{x}=\frac{F_{x}}{A}=\frac{2 P}{\pi r^{2}}$
$\tau_{x y}=-\frac{M_{x} r}{I_{P}}-\frac{4}{3} \frac{F_{y}}{A}=-\frac{(P L) r}{\pi r^{4} / 2}-\frac{4}{3} \frac{P}{\pi r^{2}}=-\frac{P}{\pi r^{2}}\left(2 \frac{L}{r}+\frac{4}{3}\right)$

Name \qquad
December 12, 2017

PROBLEM NO. 3A-15 points max.
The x-y components for a state of plane stress in a machine component are shown below. The component is made up from a ductile material having a yield strength of $\sigma_{Y}=36 \mathrm{ksi}$. For this state of stress:
a) Determine if the maximum-shear stress theory predicts a failure of the material. If the material has not failed, what is the factor of safety predicted by this theory?
b) Determine if the maximum-distortional-energy theory predicts a failure of the material. If the material has not failed, what is the factor of safety predicted by this theory?

$$
\begin{aligned}
\sigma_{a v e} & =\frac{12+22}{2}=17 \mathrm{ksi} \\
R & =\sqrt{\left(\frac{12-22}{2}\right)^{2}+(-12)^{2}}=13 \mathrm{ksi}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad\left\{\begin{array}{l}
\sigma_{p_{1}}=\sigma_{a c e}+R=30 \mathrm{ksi} \\
\sigma_{p_{2}}=\sigma_{a v e}-R=4 \mathrm{ksi}
\end{array}\right. \\
& \text { Since boo } \sigma_{p 1} \equiv \sigma_{p 2} \text { are posishe } \Rightarrow \\
& / L_{\text {maxsabu }}=\frac{\sigma_{p 1}}{2}=15 \mathrm{ksi}
\end{aligned}
$$

(a) $F S_{M S S}=\frac{\sigma_{Y} / Z}{\mid \tau /_{\text {max }, \text { abs }}}=\frac{36 / 2}{1 S}=1.20$
(b)

$$
\text { (b) } \begin{aligned}
\sigma_{M} & =\sqrt{\sigma_{p 1}^{2}-\sigma_{p_{1}} \sigma_{p_{2}}+\sigma_{p^{2}}^{2}} \\
& =\sqrt{30^{2}-(30)(4)+9^{2}} \\
& =28.2 \mathrm{kSi} \\
\therefore \quad & =S_{M D E}=\frac{\sigma_{Y}}{\sigma_{M}}=\frac{36}{28.2}=1.28
\end{aligned}
$$

(Nole: FSMDETFSMss, as expected)

December 12, 2017

PROBLEM NO. 3B-10 points max.
A rectangular cross-section rod is made up of sections BC and CD , with each section having a constant depth dimension d as shown in the figures below and being made up of a material having a Young's modulus of E. Section BC has a thickness that varies linearly from $2 h$ on its left end to h on its right end at C, whereas section CD has a constant thickness h throughout its length. Ends B and D of the rod are connected to rigid walls. An axial load P acts the point C where the two sections are joined. Use a two-element finite element model to determine the stress experienced in section $C D$ of the rod. Express your answer in terms of, at most, the variables h, d, L and E.

$$
\begin{aligned}
& k_{1}=\frac{E}{2 L} A_{1, \text { ave }}=\frac{E}{2 L} \frac{1}{2}(2 n d+n d)=\frac{3}{4} \frac{E n d}{L} \\
& k_{2}=\frac{E}{L} A_{2, \text { ave }}=\frac{E n d}{L} \\
& {[K]=\left[\begin{array}{ccc}
k_{1} & -k_{1} & 0 \\
-k_{1} & k_{1}+k_{2} & -k_{2} \\
0 & -k_{2} & k_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{3}{4} & -\frac{3}{4} & 0 \\
-\frac{3}{4} & \frac{7}{4} & -1 \\
0 & -1 & 1
\end{array}\right] \frac{E n d}{L}} \\
& \{F\}=\left\{\begin{array}{c}
-F_{1} \\
P \\
F_{2}
\end{array}\right\} \\
& {[K]\{u\}=\{F\}}
\end{aligned}
$$

To enforce B^{\prime} c, remove $1^{\text {et }} / 3^{\sim}$ column and rows of $[K]$ and the $1^{\text {et }} / 3^{\text {M }}$ now of $[F]$:

$$
\left(\frac{7}{4} \frac{E n d}{L}\right) u_{2}=P \Rightarrow u_{2}=\frac{4 P L}{7 E n d}
$$

From $3^{\text {nd }}$ equation prior to enforcing 3 bs:

$$
\begin{aligned}
& -\frac{E n d}{L} u_{2}+\frac{E n d}{L} \mu_{3}^{0}=F_{2} \\
& G F_{2}=-\frac{E n d}{K}\left(\frac{4 P K}{7 E n d}\right)=-\frac{4}{7} p \\
& \therefore \sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{-\frac{4}{7} p}{n d}=G_{1} \frac{4}{7} \frac{P}{n d}
\end{aligned}
$$

\qquad
\qquad

PROBLEM NO. 4A - 5 points max., (partial credit, please show your work here and on the next page):

Cylindrical columns A, B, C and D shown above are made of the same material (Young's modulus of E and yield stress of $\sigma_{\mathrm{y}}=E / 100$) and have the same circular cross-section of diameter D. A compressive axial load P is applied to each column.
Let $P_{c}^{A}, P_{c r}^{J}, P_{c}^{C}$, and $P_{c r}^{D}$ represent the critical buckling loads for columns A, B, C, and D, respectively. Rank order (from largest to smallest, 1 to 5) the following: $P_{c r}^{A}, P_{c r}^{s}, P_{c r}^{C}, P_{c r}^{0}$, and $\pi R^{2} \sigma_{Y} / 2$ below.

(4)

$$
\begin{aligned}
& \text { Leff }=2 L \\
& S_{r}=\frac{B L}{D}=200>(S)_{\alpha} \Rightarrow \text { Edra's } \\
& { }_{*}^{\text {colum }}
\end{aligned}
$$

$$
\begin{aligned}
& S_{T}=\frac{\text { Leff }}{\sqrt{T / A}}=\frac{4 \text { LefF }}{D} \\
& \left(S_{R}\right)_{a}=\pi \sqrt{\frac{2 E}{\sigma_{T}}}=44.4
\end{aligned}
$$

(B)

$$
\begin{aligned}
& \text { Leff }=0.7 \mathrm{~L} \\
& \Rightarrow S_{r}=\frac{2.8 \mathrm{~L}}{D}=70>(\mathrm{Sr})_{\text {ue }} \Rightarrow \begin{array}{l}
\text { Ever's } \\
\text { colwma }
\end{array} \\
& P_{o r}=\frac{K E I}{L e I^{2}}=\frac{\pi E I}{70^{2}}
\end{aligned}
$$

(c) \quad effr $=L$

$$
\begin{aligned}
& \Rightarrow S_{e}=\frac{A L}{D}=120>\left(S_{r}\right)_{o r} \Rightarrow \begin{array}{l}
\text { euler's } \\
\text { colums }
\end{array} \\
& P_{c r}^{c}=\frac{\pi E I}{\text { eeff }_{2}^{2}}=\frac{\pi E I}{120^{2}}
\end{aligned}
$$

(D)

$$
\begin{aligned}
& \text { Leff }=0.7 L \\
& \Rightarrow S_{r}=\frac{2.8 L}{D}=14<\left(S_{r}\right)_{\text {er }} \Rightarrow \begin{array}{l}
\text { Thonsons } \\
\text { columa. }
\end{array} \\
& P_{C r}^{3}=\sigma_{y} \&\left[1-\frac{\sigma_{y} S_{x}^{2}}{4 \pi^{2} E}\right]=0.95 \sigma_{y} A>\sigma_{y} \frac{\pi R^{-}}{2}
\end{aligned}
$$

Also, for giver E xd G_{y}, ony euler's columen will have a budding lasd swather than the budding lasd F Thonsan's colerun.

> guere:

$$
\left[\partial t\left(s_{r}\right)_{k} P_{s e}=J Y / H / Z\right]
$$

$$
P_{o r}^{D}>\frac{X_{1} \pi R^{2}}{2}>\operatorname{Par}_{c r}^{B}>\operatorname{Par}_{c r}^{c}>\operatorname{Por}_{c r}^{A}
$$

$$
\begin{aligned}
& \text { Per } X \operatorname{J}_{\varphi} \frac{\pi R^{2}}{2} \\
& \Rightarrow \\
& P_{o r}>P_{c r}^{A} \\
& P_{c r}>P_{c r}^{B} \\
& P_{a x}^{D}>P_{o c}^{C}
\end{aligned}
$$

ME J23 Final Cramination
December 12,2017

Name \qquad
Instructor \qquad

The schemitiss presented below coerespond to beams with ypan 2 and loaded with either a couple al the left end or with a focke per unit of length with differest dismitutions (ie_- linear, comentant of quadratic).

Problevs 4B - 7 points max. (partlal credit, please show your work on next page) Which shematic eorresponds to a boam whose bending moment in equal to

Circle the correct angwer (a) (b) (c) 10 (d) 61

$$
M(x)=\frac{x w_{2} 2}{10}-\frac{w_{y} x^{3}}{6 L}
$$

Problem 4C - 7 points max. (partlal crecdit, please show your work on neirt page)
Whicle whematic corresponds to a bean whoie bending mornern is equal to

Civite the correct answer (a)

$$
\begin{aligned}
& M(x)=\frac{w_{0} x^{4}}{17}-\frac{w_{1} L x^{3}}{6} \\
& \text { (b) } \quad \text { (c) } \text { (d) }
\end{aligned}
$$

(b)
(g) (h)
(i) (i)

HINT: ISentify which supports and loads are compatible with the given bending momenis.

P4B:

$$
\begin{gathered}
V(x)=\frac{d M}{d x}=\frac{w_{0} L}{10}-\frac{w_{0} x^{2}}{2 L} \\
p(x)=\frac{d V}{d x}=\frac{-w_{0} x}{L}=>\text { linear load }
\end{gathered}
$$

$@ x=0$

$$
M(0)=0 V(0)=\frac{w_{0} L}{10} \neq 0
$$

$$
\text { Simply supported at } x=0
$$

$@ x=L$

$$
\begin{aligned}
& M(L)=\frac{w_{0} L^{2}}{10}-\frac{w_{0} L^{2}}{6} \neq 0 \\
& V(L)=\frac{w_{0} L}{10}-\frac{w_{0} L}{2} \neq 0
\end{aligned}
$$

Fixed end at $x=L$

P4C:

$$
V(x)=\frac{d M}{d x}=\frac{w_{0} x^{3}}{3}-\frac{w_{0} L x^{2}}{2}
$$

$p(x)=\frac{d V}{d x}=w_{0} x^{2}-w_{0} L x=>$ quadratic load with $p=0$ at $x=0$ and at $x=L$
$@ x=0$

$$
M(0)=0 V(0)=0
$$

Free end at $\boldsymbol{x}=0$
$@ x=L$

$$
\begin{aligned}
& M(L)=\frac{w_{0} L^{4}}{12}-\frac{w_{0} L^{4}}{6} \neq 0 \\
& V(L)=\frac{w_{0} L^{3}}{3}-\frac{w_{0} L^{3}}{2} \neq 0
\end{aligned}
$$

$$
\text { Fixed end at } x=L
$$

ME 329 Fina/ Examination
December 12,2017

Name

\qquad
Instructor \qquad

PROBLEM NO. $40,-3$ points max. (no partial credit)
Insicabe which of the schematics presested below depicts the deflection curve of the following beam:

(d)
(d) None of the above

ME 323 Final Eraminatign
December 12, 2097

Name

\qquad
instructor

PAOBLEM NO, 4E -3 points max. (no partial credit)

Indicate which of the schematics peesented below depists the deflectice curve of the following beam

Cincle the correct asnery
(a)
(b)
(d)

(d) None of the above

