## ME 323 - Mechanics of Materials <br> Exam \# 3

## Date: December 9, 2013 Time: 7:00 - 9:00 PM <br> Location: EE 129 \& EE170

## Instructions:

Circle your lecturer's name and your class meeting time.

| Krousgrill | Sadeghi | Bilal |
| :---: | :---: | :---: |
| $7: 30-8: 30 \mathrm{AM}$ | $10: 30-11: 30 \mathrm{AM}$ | $3: 30-4: 30 \mathrm{PM}$ |

Begin each problem in the space provided on the examination sheets. If additional space is required, use the yellow paper provided.

Work on one side of each sheet only, with only one problem on a sheet.
Please remember that for you to obtain maximum credit for a problem, you must present your solution clearly. Accordingly,

- coordinate systems must be clearly identified,
- free body diagrams must be shown,
- units must be stated,
- write down clarifying remarks,
- state your assumptions, etc.

If your solution cannot be followed, it will be assumed that it is in error.
When handing in the test, make sure that ALL SHEETS are in the correct sequential order.
Remove the staple and restaple, if necessary.

Prob. 1 (24 points) $\qquad$

Prob. 2 (8 points) $\qquad$

Prob. 3 (30 points) $\qquad$

Prob. 4 (8 Points) $\qquad$

Prob. 5 (26 points) $\qquad$

Prob. 6 (4 points) $\qquad$

Total $\qquad$

## Instructor

$\qquad$

## Useful Equations

(If you do not see equations that you need, raise your hand and ask.)

$$
\begin{array}{l|l|}
\sigma=E \varepsilon & \tau=G \gamma \\
\sigma=\frac{P}{A} & G=\frac{E}{2(1+v)} \\
\tau=\frac{T \rho}{I_{P}} & u_{B}=u_{A}+\delta_{A B} \\
\frac{d V}{d x}=w(x) & \theta_{B}=\theta_{A}+\phi_{A B} \\
\frac{d v}{d x}=\theta & \frac{d M}{d x}=V \\
\sigma=-\frac{M y}{I} & \Delta V=P \\
\delta_{A B} L \\
\hline
\end{array}
$$

$$
\begin{array}{lll}
\sigma_{1}=\sigma_{a v g}+R & \sigma_{2}=\sigma_{a v g}-R & \tan 2 \theta_{P}=\frac{\tau_{x y}}{\left(\sigma_{x}-\sigma_{y}\right) / 2} \\
\sigma_{a v g}=\frac{\sigma_{x}+\sigma_{y}}{2} & R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} &
\end{array}
$$

$$
\langle x-a\rangle^{n}=\left\{\begin{array}{cc}
0 & \text { for } x<a
\end{array} \quad n=0,1,2, \ldots \quad \int\langle x-a\rangle^{n} d x=\left\{\begin{array}{ll}
\langle x-a\rangle^{n+1} & \text { for } n \leq 0 \\
(x-a)^{n} & \text { for } x>a
\end{array} \quad \frac{\langle x-a\rangle^{n+1}}{n+1} \text { for } n>0^{\frac{x}{2}}\right.\right.
$$

$$
U=\frac{1}{2} \int_{0}^{L} \frac{F^{2}(x)}{E A} d x=\frac{1}{2} \frac{F^{2} L}{E A} \quad U=\frac{1}{2} \int_{0}^{L} \frac{T^{2}(x)}{G I_{P}} d x=\frac{1}{2} \frac{T^{2} L}{G I_{P}}
$$

$$
U=\frac{1}{2} \int_{0}^{L} \frac{M^{2}(x)}{E I} d x \quad U=\frac{1}{2} \int_{0}^{L} \frac{f_{s} V^{2}(x)}{G A} d x
$$

$$
\delta_{i}=\frac{\partial U}{\partial P_{i}}
$$

$$
\delta_{i}=\int_{0}^{L} \frac{M(x) \frac{\partial M(x)}{\partial P_{i}}}{E I} d x+\int_{0}^{L} \frac{F(x) \frac{\partial F(x)}{\partial P_{i}}}{E A} d x+\int_{0}^{L} \frac{T(x) \frac{\partial T(x)}{\partial P_{i}}}{G I_{p}} d x+\int_{0}^{L} \frac{f_{s} V(x) \frac{\partial V(x)}{\partial P_{i}}}{A G} d x
$$

Name
(Print) (Last) (First)

## Instructor

$\qquad$

$$
\sigma_{h}=\frac{p R}{t} \quad \sigma_{a}=\frac{p R}{2 t}
$$

$\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]+\alpha \Delta T$
$\gamma_{x y}=G \gamma_{x y} \quad \gamma_{x z}=G \gamma_{x z}$ $\gamma_{y z}=G \gamma_{y z}$
$\sigma_{M}=\frac{\sqrt{2}}{2} \sqrt{\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{1}-\sigma_{3}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}}$
$\sigma_{M}=\frac{\sqrt{2}}{2}\left[\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+\left(\sigma_{x}-\sigma_{z}\right)^{2}+6\left(\tau_{x y}^{2}+\tau_{y z}^{2}+\tau_{x z}^{2}\right)\right]^{1 / 2}$
$F S=\frac{\text { failure stress }}{\text { allowable stress }}, \frac{\text { yield strength }}{\text { state of stress }}$
Factor of safety based on the maximum shear stress theory $=\frac{S_{y} / 2}{\tau_{\max _{a b s}}}$
$I_{P}=\frac{\pi d^{4}}{32}$
$I_{\text {circle }}=\frac{\pi d^{4}}{64}$
$I_{\text {rectangle }}=\frac{b h^{3}}{12}$
Semi-circle: $\bar{y}^{\prime}=\frac{4 r}{3 \pi}$
$\qquad$
(Print)
(Last)
(First)
December 9, 2013
Instructor $\qquad$
PROBLEM 1 ( 24 points) - The cantilever beam shown below is subject to a distributed load and supported by a spring at the left end. Using Castigliano's method, determine the force in the spring; leave your answer in terms of $\mathrm{E}, \mathrm{I}, \mathrm{W}_{\mathrm{o}}$, L , and K . Spring constant K is known and you may neglect shear strain energy.


$$
\sum M_{0}=0=M_{1}(x)=F_{S} x
$$



$$
\sum M_{0}=0=M_{2}(x)=F_{5} x-\frac{W_{0}}{2}(x-L / 3)^{2}
$$

$$
\frac{d M_{2}}{d F_{s}}=x
$$

$$
\delta_{F_{S}}=\int_{0}^{L / 3} \frac{M_{1}(x)}{E I} \frac{d M_{1}}{d F_{S}} d x+\int_{L / 3}^{L} \frac{M_{2}(x)}{E I} \frac{d M_{2}}{d F_{S}} d x=-\frac{F_{S}}{K}
$$

SUB FROM ABOVE + SOLVE WE DETAIN

December 9, 2013
$\qquad$ (Print) Instructor $\qquad$

$$
-\frac{F_{S}}{K}=\frac{1}{81} \frac{F_{S} L^{3}}{E I}-\frac{4}{27} \frac{W_{0} L^{4}}{E I}+\frac{26}{81} \frac{F_{S} L^{3}}{E I}+\frac{26}{243} \frac{W_{0} L^{4}}{E I}
$$

$$
\text { Solve FOR } F_{S}
$$

$$
F_{S}=\frac{10}{81} \frac{W_{0} L^{4} K}{K L^{3}+3 E I}
$$

December 9, 2013

## Instructor

$\qquad$

## PROBLEM 2 (No partial credit. Zero credit if more than one choice is selected)

$\underline{\mathbf{2 a}-(4 \text { Points }) ~-~ A ~ b e a m ~ i s ~ s u b j e c t ~ t o ~ t h e ~ l o a d i n g ~ c o n d i t i o n ~ a s ~ s h o w n ~ b e l o w . ~}$


The loading function for the beam according to singularity/Macaulay function is: (choose the appropriate loading function).
(a) $\left.\mathrm{w}(x)=R_{1}\langle x\rangle^{-1}-w_{0}<x-L / 3>^{0}-M_{0}<x-L / 3\right\rangle^{-2}+R_{w}<x-L>^{-1}+M_{w}<x-L>^{-2}$
b) $\left.\quad \mathrm{w}(x)=-R_{1}\langle x\rangle^{0}+w_{0}\langle x-L / 3\rangle^{1}-M_{0}\langle x-L / 3\rangle^{-2}+R_{w}\langle x-L\rangle^{-1}+M_{w}<x-L\right\rangle^{-2}$
c) $\quad \mathrm{w}(x)=R_{1}\langle x\rangle^{-1}-w_{0}\langle x-L / 3\rangle^{0}-M_{0}\langle x-L / 3\rangle^{-1}+R_{w}\langle x-L\rangle^{-1}+M_{w}\langle x-L\rangle^{-1}$
d) $\left.\mathrm{w}(x)=-R_{1}\langle x\rangle^{-1}+w_{0}\langle x-L / 3\rangle^{1}-M_{0}<x-L / 3\right\rangle^{-1}+R_{w}\langle x-L\rangle^{-1}+M_{w}\langle x-L\rangle^{-1}$
e) None of the above

The shear function for the beam according to singularity/Macaulay function is: (choose the appropriate loading function).
a) $\left.\left.\left.\left.\mathrm{V}(x)=-R_{1}\langle x\rangle^{-1}-w_{0}<x-L / 3\right\rangle^{1}-M_{0}<x-L / 3\right\rangle^{-1}+R_{w}<x-L\right\rangle^{0}+M_{w}<x-L\right\rangle^{-1}$
(b) $\mathrm{V}(x)=R_{1}\langle x\rangle^{0}-w_{0}\langle x-L / 3\rangle^{1}-M_{0}\langle x-L / 3\rangle^{-1}+R_{w}\langle x-L\rangle^{0}+M_{w}\langle x-L\rangle^{-1}$
c) $\quad \mathrm{V}(x)=R_{1}\langle x\rangle^{0}+w_{0}\langle x-L / 3\rangle^{1}-M_{0}\langle x-L / 3\rangle^{0}+R_{w}\langle x-L\rangle^{0}+M_{w}<x-L>^{0}$
d) $\left.\quad \mathrm{V}(x)=-R_{1}\langle x\rangle^{-1}+w_{0}\langle x-L / 3\rangle^{1}-M_{0}\langle x-L / 3\rangle^{0}+R_{w}\langle x-L\rangle^{0}+M_{w}<x-L\right\rangle^{0}$
e) None of the above

Name
(Print) (Last) (First)

Instructor $\qquad$



Name
(Print) (Last) (First)
$\qquad$
$\qquad$

## Instructor

## December 9, 2013

Problem 3 ( $\mathbf{3 0}$ points): - The member is fixed into a wall and subject to the loading as shown below.

1. Draw the free body diagram for the member and determine the reaction forces and moments at the wall.
2. Determine the state of stress at point A.
3. If the yield strength for the member is $\mathrm{S}_{\mathrm{y}}=40 \mathrm{Ksi}$, determine the factors of safety guarding static failure at point A , based on the maximum shear stress and distortion energy theories.
Note: $\mathbf{P}=\mathbf{4 0 0} \mathbf{l b}, \mathrm{L}=10$ in and member diameter $=2 \mathrm{in}$.


08 Dec. 201 Final Exam
Given:


$$
\begin{array}{ll}
A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(2)^{2} \\
A & =\pi \mathrm{in}^{2}
\end{array} \quad \begin{array}{ll}
I_{x x}=I_{y y}=\frac{\pi}{4} r^{4} \text { or } \frac{\pi}{64} d^{4} & \Rightarrow I_{x x}=I_{y y}=\frac{\pi}{64}(2)^{4} \\
=0.785398 \mathrm{in}^{4}
\end{array}, \begin{aligned}
& I_{P}=1.5708 \mathrm{in}^{4}
\end{aligned}
$$

Step \# 1:
Sum force in $x, y, z$ axis.

$$
\begin{aligned}
\sum F_{x} \Rightarrow & \Rightarrow-F x-2 P=0 \\
& F_{x}=-2 P \\
\sigma_{A 1}= & \frac{F_{x}}{A}=\frac{-800}{\pi}=-254.648 p i \\
\sigma_{A_{1}} & =-254.648 \mathrm{psi}
\end{aligned}
$$

Step \# 2:
Sum forces in $k$ divedion

$$
\begin{aligned}
& \sum F_{Y}=0 \Rightarrow \\
& -F_{Y}+P=0 \\
& \Rightarrow F_{Y}=P=400 \mathrm{lb} \\
& \therefore F_{Y}=400 \mathrm{lb}
\end{aligned}
$$

The force in $y$-direction is casing a transverse shear at ptA.

$$
\begin{aligned}
& \tau_{A 2}=\frac{V Q}{I t}=\frac{4}{3} \frac{V}{A}=\frac{4}{3} \frac{F y}{A}=\frac{4}{3} \frac{400}{\pi} \\
& \tau_{A 2}=169.765 \text { psi }
\end{aligned}
$$

Step \# 3:
Sum forces in $Z$-direction

$$
\begin{aligned}
& \sum P_{2}=0 \\
& -F_{2}+3 P=0 \\
& F_{2}=3 .(400)=1200 \mathrm{lb} . \\
& F_{2}=120016 \mathrm{~s}
\end{aligned}
$$

There is no stress at point due $F_{2}$.

$$
t_{A 3}=0
$$

Now sum the moments about each axis.
Use cross-product to calculate the mismant about each axis.

$$
\begin{aligned}
M & =\bar{r} \times \bar{F} \\
\bar{r} & =L \hat{i}-L \hat{j}+L \hat{k} \\
& =10 i-10 \hat{j}+5 \hat{k} \\
F & =-2 P \hat{i}+P \hat{j}+3 P \hat{k} \\
= & -2(400) \hat{i}+400 \hat{j}+3(400) \hat{k} \\
F & =-800 \hat{i}+400 \hat{j}+1200 \hat{k} \\
M=\bar{r} \times \bar{F} & =(10 \hat{i}-10 \hat{j}+5 \hat{k}) \times(-800 \hat{i}+400 \hat{j}+1200 \hat{k}) \\
M & =-14000 i-16000 \hat{j}-4000 k
\end{aligned}
$$

step \#4:

The moment about $x$-axis causing a torque is the negative $x$-direction.

$$
\begin{aligned}
& \tau_{A 4}=\frac{T_{1}}{J}=\frac{\left(-14 \times 10^{3}\right)(6)}{1.57} \\
& \tau_{A 4}=8.92 \times 10^{3} \mathrm{psi} \text { - in noglive } x \text {-dir }
\end{aligned}
$$

Slop $\# 5$ negative
Moment about AY- axis is causing a bending slras at pt.

$$
\sigma_{A 5}=\frac{N_{y}(y)}{I_{y Y}}=\frac{+\left(-16 \times 10^{3}\right)(1)}{.78539}
$$

$\sqrt{A 5}=-20.4 \times 10^{3} \mathrm{psi}$ - negative $y$-dir. - a comprising fore at A.
step \# 6r
The moment about the $Z$-ami scauses doesnit any bonding sloes at pf. A.

$$
\sqrt{A} 6=0
$$

Now indicate all the stress at the stress element
looking
the $Z$
?
looking down

here

$$
\begin{aligned}
& \sigma_{A 1}=254.6 p_{s i} \\
& \sigma_{A 5}=20.4 \times 10^{3} \mathrm{psi} \\
& \tau_{A 2}=169.765 \mathrm{psi}^{3} \\
& \tau_{A 4}=8.92 \times 10^{3} \mathrm{psi}
\end{aligned}
$$



Now add the collinear stressess and draw a simplified stress element.

part (2).
state of stress.

$$
\begin{aligned}
& \left.\begin{array}{l}
\sigma_{x}=20.654 \mathrm{ksi} \\
\sigma_{y}=0 \\
\tau_{x y}=9.089 .
\end{array}\right\} \begin{array}{l}
X(20.654,9.089) \\
\tau_{y x}=-9.089
\end{array} \quad \begin{array}{l}
X(0,-9.089)
\end{array} \\
& \text { } \sigma_{\text {are }}=\frac{\pi x+\pi}{2} \\
& =-10.3 \mathrm{ksi} \\
& \text { Valve. }=-10.3 \mathrm{ksi} \\
& R=\sqrt{\left(\frac{\sqrt{x}-\sigma x^{2}}{2}\right)^{2}+\tau_{x y}^{2}} \\
& =\sqrt{\left((-10.3)^{2}+(9.089)^{2}\right.} \\
& R=13.8 \mathrm{ksi} \\
& \Gamma_{1}=\Gamma_{\text {ane }}+R \text {. } \\
& \sigma_{1}=3.43 \mathrm{ksi} \\
& \sigma_{2}=\text { Tare }-R \\
& \sigma_{2}=-24.081 \mathrm{ksi} \\
& \theta_{p}=69.43^{\circ} \mathrm{ccw} \\
& \theta_{s}=65.57^{\circ} \mathrm{C} \cdot \mathrm{~W}
\end{aligned}
$$

part (3):
Factor of soffty bosed on masom shas sheas thary.
(i)

$$
\begin{aligned}
& \sigma_{1}>0, \sigma_{2}<0 . \\
& F S=\frac{\sigma_{1}}{\sigma_{1}-F_{2}}=\frac{40}{3.43+24.081}= \\
& F S=1.45^{\circ} \quad \text { fails! }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \sigma_{a}=\sqrt{\sigma_{1}^{2}+\sigma_{y}^{2}-\sigma_{1} \sigma_{2}} \\
& \sigma_{M}=\sqrt{(3.43)^{2}+(-24.001)^{2}-(3.43)(-24.081)} \\
& \sigma_{M}=25.966 \mathrm{kSi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { F.S }=\frac{\sigma x}{\sigma \pi 9}=\frac{40}{25.966}=1.54 \\
& F S=1.54
\end{aligned}
$$

$\qquad$
(Print) (Last)
(First)
December 9, 2013

## Instructor

$\qquad$
Problem 4 (8 points): - The beam is subject to the loading as shown in the figure below.

1. Choose the correct shear diagram from the column on the left.
2. Choose the correct moment diagram from the column on the right.

Note: The correct shear diagram on the left and the correct moment diagram on the right do not necessarily line up. Circle answers from the following choices.


Problem 5 ( 20 points): - Two rods (each made up of a material with a Young's modulus E, a thermal expansion coefficient $\alpha$ and circular cross-section of diameter d) are attached between a rigid disk C (of weight W ) and two fixed supports B and H , as shown in the figure. Rod 1 has a length of L, whereas Rod 2 has a length of 2 L . Rod 1 is given a temperature increase of $\Delta T$ with the temperature of Rod 2 being held constant. Ignore the weights of the rods.
a) Draw a free body diagram of the rigid disk C and write down the equilibrium equation(s) for the disk.


$$
\sum F_{x}=F_{2}-W-F_{1}=0 \Rightarrow F_{2}=F_{1}+W
$$


b) Write down the load/temperature/elongation equation for each rod.

$$
\begin{aligned}
& e_{1}=\frac{F_{1} L}{E A}+\alpha \Delta T L \\
& e_{2}=\frac{F_{2}(2 L)}{E A}
\end{aligned}
$$

c) Write down the compatibility equation relating the elongation/compression of the two rods. $u_{H}=e_{1}+e_{2}=0$
d) Solve your equations from a), b) and c) above for the stress in Rod 1. Leave your answer in terms of, at most, $\mathrm{W}, \Delta T, \alpha, E, d$ and $L$.

$$
\begin{aligned}
0 & =e_{1}+e_{2}=\frac{F_{1} L}{E A}+\alpha \Delta T L+\frac{2 F_{2} L}{E A} \\
& =\frac{F_{1} L}{E A}+\alpha \Delta T L+\frac{2\left(F_{1}+W\right) L}{E A}=\frac{3 F_{1} L}{E A}+\frac{2 W L}{E A}+\alpha \Delta T L \Rightarrow \\
F_{1} & =-\left(\frac{2 W+\alpha \Delta T E A}{3}\right) \Rightarrow \\
\sigma_{1} & =\frac{F_{1}}{A}=-\frac{1}{3}\left(\frac{2 W}{A}+\alpha \Delta T E\right)=-\frac{1}{3}\left(\frac{8 W}{\pi d^{2}}+\alpha \Delta T E\right) \quad \text { (compression) }
\end{aligned}
$$

| Name |  |
| :--- | :--- | :--- |
| (Print) | (Last) |

December 9, 2013
Instructor $\qquad$
Problem 6 (4 points): - Consider two situations. One, where the beam below is made from steel, having a Young's modulus of $E_{s t}$. Two, where the beam is made from aluminum, having a Young's modulus of $E_{a l}$, where $E_{s t}>E_{a l}$. Let $\left(\sigma_{\max }\right)_{s t}$ and $\left(\sigma_{\max }\right)_{a l}$ denote the absolute values of the maximum normal stress on the cross section at location B for the steel and aluminum beams, respectively. Circle the correct statement below related to the relative sizes of $\left(\sigma_{\max }\right)_{s t}$ and $\left(\sigma_{\max }\right)_{a l}$ :
a) $\left(\sigma_{\max }\right)_{s t}>\left(\sigma_{\max }\right)_{a l}$
(b) $\left(\sigma_{\max }\right)_{s t}=\left(\sigma_{\max }\right)_{a l}$
c) $\left(\sigma_{\max }\right)_{s t}<\left(\sigma_{\max }\right)_{a l}$


