\qquad

ME 323 FINAL EXAM
 FALL SEMESTER 2010
 7:00 PM - 9:00 PM
 Dec. 16, 2010

Instructions

1. Begin each problem in the space provided on the examination sheets. If additional space is required, use the paper provided. Work on one side of each sheet only, with only one problem on a sheet.
2. Each problem is of value as indicated below.
3. To obtain maximum credit for a problem, you must present your solution clearly. Accordingly:
a. Identify coordinate systems
b. Sketch free body diagrams
c. State units explicitly
d. Clarify your approach to the problem including assumptions
4. If your solution cannot be followed, it will be assumed that it is in error.

Prob. 1 _(25)
Prob. 2 _(25) \qquad
Prob. 3 _(25) \qquad
Prob. 4 _(25) \qquad

Total (100)

Name:
$\sigma=F_{n} / A \quad \tau_{\text {avg }}=V / A \quad F . S .=F_{\text {fail }} / F_{\text {allow }} \quad$ F.S. $=\sigma_{\text {fail }} / \sigma_{\text {allow }} \quad F . S .=\tau_{\text {fail }} / \tau_{\text {allow }}$ $\varepsilon_{\text {avg }}=\left(\Delta s^{\prime}-\Delta s\right) / \Delta s=\delta / L_{0} \quad \gamma=(\pi / 2)-\theta^{\prime} \quad \sigma=E \varepsilon \quad v=-\varepsilon_{\text {lat }} / \varepsilon_{\text {long }} \quad \tau=G \gamma$ $\delta_{t h}=\alpha(\Delta T) L \quad \delta_{t h}=\int_{0}^{L} \alpha(\Delta T) d x$
$\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right]+\alpha \Delta T, \varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]+\alpha \Delta T, \gamma_{x y}=\frac{1}{G} \tau_{x y} \quad, \gamma_{x z}=\frac{1}{G} \tau_{x z} \quad, \gamma_{y z}=\frac{1}{G} \tau_{y z}$
$\delta=\frac{F_{i} L_{0}}{E A} \quad \delta=\int_{0}^{L} \frac{F_{i}(x)}{E(x) A(x)} d x \quad u_{B}=u_{A}+\delta_{A B}$
$\phi \rho=\gamma L \quad \tau=G c \frac{\phi}{L} \quad \tau=\frac{T_{i} \rho}{J} \quad \phi=\frac{T_{i} L}{G J} \quad \phi=\int_{0}^{L} \frac{T_{i}(x)}{G(x) J(x)} d x \quad \phi_{B}=\phi_{A}+\phi_{A B}$
$J=\frac{\pi c^{4}}{2} \ldots$ bar $\quad J=\frac{\pi\left(c_{o}{ }^{4}-c_{i}{ }^{4}\right)}{2} \cdots$ tube
$\frac{d V}{d x}=p(x) \quad\langle x-a\rangle^{n}=\left\{\begin{array}{cc}0 & \text { for } x<a \\ (x-a)^{n} & \text { for } x \geq a\end{array} \quad n=0,1,2,3\right.$
$\begin{array}{ll}\frac{d M}{d x}=V(x) & E I v^{\prime \prime}=M, \\ \Delta V=P & \left(E I v^{\prime \prime}\right)^{\prime}=V, \\ \Delta M=-M_{0} & \left(E I v^{\prime \prime}\right)^{\prime}=p\end{array} \quad \int\langle x-a\rangle^{n} d x= \begin{cases}\langle x-a\rangle^{n+1} & \text { for } n \leq 0 \\ \frac{1}{n+1}\langle x-a\rangle^{n+1} & \text { for } n>0\end{cases}$
$\sigma(x, y)=\frac{-E(x) y}{\rho(x)}=\frac{-M(x) y}{I_{z}}$,
rectangle: $I=\left(b h^{3}\right) / 12$, circle: $I=\left(\pi r^{4}\right) / 4$,
semicircle : $I=\left(\pi r^{4}\right) / 8$, centroid at $(4 r) /(3 \pi)$ from diameter

$$
\begin{aligned}
& \bar{y}=\left(\sum_{i} \bar{y}_{i} A_{i}\right) /\left(\sum_{i} A_{i}\right) \quad I=\sum_{i} I_{0, i}+d_{i}^{2} A_{i} \\
& \tau(x, y)=\frac{V(x) Q(y)}{I_{z} b}, \quad q=\frac{V Q}{I}, \quad Q(y)=\int_{A^{\prime}} \eta d A=\bar{y}^{\prime} A^{\prime}
\end{aligned}
$$

spherical PV : $\sigma_{s}=\frac{p r}{2 t}$; cylindrical PV : $\sigma_{h}=\frac{p r}{t} ; \sigma_{a}=\frac{p r}{2 t}$;

$$
u=(1 / 2)\left(\sigma_{x} \varepsilon_{x}+\sigma_{y} \varepsilon_{y}+\sigma_{z} \varepsilon_{z}+\tau_{x y} \gamma_{x y}+\tau_{x z} \gamma_{x z}+\tau_{y z} \gamma_{y z}\right)
$$

$$
U_{\text {elas }}(\text { truss })=\sum \frac{N_{i}^{2} L_{i}}{2 E_{i} A_{i}}, U_{\text {elas }}(\text { torsion bar })=\sum \frac{T_{i}^{2} L_{i}}{2 G_{i} J_{i}}, U_{\text {elas }}(\text { bending })=\int_{L} \frac{[M(x)]^{2}}{2 E I} d x
$$

$$
(1 / 2) P_{\text {ext }} \Delta=U_{\text {elas }} \quad(1 / 2) M_{\text {ext }} \theta=U_{\text {elas }}
$$

$1 \cdot \Delta=\sum \frac{n_{i} N_{i} L_{i}}{E_{i} A_{i}}, 1 \cdot \theta=\sum \frac{t_{i} T_{i} L_{i}}{G_{i} J_{i}}, 1 \cdot \Delta=\int_{L} \frac{m(x) M(x)}{E I} d x, 1 \cdot \theta=\int_{L} \frac{m_{\theta}(x) M(x)}{E I} d x$

Name: \qquad Solution
(First)

$$
\begin{aligned}
& \sigma_{x^{\prime}}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta_{x x^{\prime}}+\tau_{x y} \sin 2 \theta_{x x^{\prime}} \quad \sigma_{y^{\prime}}=\frac{\sigma_{x}+\sigma_{y}}{2}-\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta_{x x^{\prime}}-\tau_{x y} \sin 2 \theta_{x x^{\prime}} \\
& \tau_{x^{\prime} y^{\prime}}=-\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right) \sin 2 \theta_{x x^{\prime}}+\tau_{x y} \cos 2 \theta_{x x^{\prime}} \quad \sigma_{1}=\sigma_{a v g}+R, \quad \sigma_{2}=\sigma_{a v g}-R, \quad \tau_{\max }=R \\
& \sigma_{a v g}=\left(\frac{\sigma_{x}+\sigma_{y}}{2}\right) \quad R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}, \tan 2 \theta_{p}=\frac{\tau_{x y}}{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)} \tan 2 \theta_{s}=\frac{-\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)}{\tau_{x y}} \\
& \varepsilon_{x^{\prime}}=\frac{\varepsilon_{x}+\varepsilon_{y}}{2}+\frac{\varepsilon_{x}-\varepsilon_{y}}{2} \cos 2 \theta_{x x^{\prime}}+\frac{\gamma_{x y}}{2} \sin 2 \theta_{x x^{\prime}} \quad \varepsilon_{y^{\prime}}=\frac{\varepsilon_{x}+\varepsilon_{y}}{2}-\frac{\varepsilon_{x}-\varepsilon_{y}}{2} \cos 2 \theta_{x x^{\prime}}-\frac{\gamma_{x y}}{2} \sin 2 \theta_{x x^{\prime}} \\
& \frac{\gamma_{x^{\prime} y^{\prime}}}{2}=-\left(\frac{\varepsilon_{x}-\varepsilon_{y}}{2}\right) \sin 2 \theta_{x x^{\prime}}+\frac{\gamma_{x y}}{2} \cos 2 \theta_{x x^{\prime}} \quad \varepsilon_{1}=\varepsilon_{a v g}+R, \quad \varepsilon_{2}=\varepsilon_{a v g}-R, \quad \frac{\gamma_{\text {in-plane }}^{\max }}{2}=R \\
& \varepsilon_{a v g}=\left(\frac{\varepsilon_{x}+\varepsilon_{y}}{2}\right) \quad R=\sqrt{\left(\frac{\varepsilon_{x}-\varepsilon_{y}}{2}\right)^{2}+\left(\frac{\gamma_{x y}}{2}\right)^{2}}, \tan 2 \theta_{p}=\frac{\gamma_{x y}}{\varepsilon_{x}-\varepsilon_{y}} \quad \tan 2 \theta_{s}=-\left(\frac{\varepsilon_{x}-\varepsilon_{y}}{\gamma_{x y}}\right)
\end{aligned}
$$

Tresca: $\tau_{\max }^{a b s}=\frac{\sigma_{\text {yield }}}{2}$, von Mises: $\sigma_{\text {yield }}^{2}=\sigma_{1}^{2}-\sigma_{1} \sigma_{2}+\sigma_{2}^{2}$, Brittle Solids: $\left|\sigma_{1}\right|=\sigma_{\text {ultimate }},\left|\sigma_{2}\right|=\sigma_{\text {ultimate }}$ $P_{\text {crit }}=\frac{\pi^{2} E I}{\left(L_{\text {eff }}\right)^{2}}$
\qquad Solution

The beam (length $\mathbf{a + b}$) shown below is loaded by a distributed load $\mathbf{w}_{\mathbf{0}}$ and is supported by three simple supports. El is constant.

- Determine the reactions at the three supports
- Sketch the shear force and bending moment diagrams.

\qquad
Boundary Conditions

$$
\begin{aligned}
& v(0)=0 \Rightarrow C_{2}=0 \\
& v(10)=0 \\
& E T(0)=\frac{C_{7}}{6} 10^{3}+\frac{B_{4}}{6}\langle 0)^{3}-\frac{1}{8}(0)^{4}+C_{1}(10)
\end{aligned}
$$

$$
\begin{aligned}
& =166.67 C_{y}+10 C_{1}=0 \\
& v(18)=0 \\
& E T(0)=\frac{C_{y}}{6}(18)^{3}+\frac{3}{6}(8)^{3}-\frac{1}{8}(8)^{3}+c_{1}(18) \\
& 3 \quad 972 C_{y}+85.3 B_{y}-512+18 C_{1}=0
\end{aligned}
$$

Solve (1) $+(2)+(3)$

$$
\begin{array}{ll}
B_{y}=14.4 \mathrm{Kip} \\
C_{4}=-1.07 \mathrm{Kip} \\
C_{1}=17.78 \quad A_{y}=10.7 \mathrm{Kip} \\
\end{array}
$$

Name: \qquad Solution

Instructor: Siegmund Sarkar Susilo (Print) (Last)
(First)

PROBLEM \#2 (25 points)

The truss structure shown below is loaded by a force $\mathbf{P = 1 . 5}$ kip acting in the horizontal direction. The elements $A B$ and $B C$ possess cross section area $A=1.0 \mathrm{in}^{2}$, and elastic modulus $\mathrm{E}=30 \times 10^{\mathbf{3}} \mathbf{k s i}$. The distance AC is $\mathbf{2 a = 4 8} \mathrm{in}$. The angle between the two elements is $\mathbf{2 \beta}=\mathbf{6 0}$.

Using work-energy principle and/or the principle of virtual work:

- Determine the horizontal displacement of point $\mathrm{B}, \mathbf{u}_{\mathbf{B}}$.
- Determine the vertical displacement of point $B, \mathbf{v}_{\mathbf{B}}$.

Name: \qquad Solution
(First)

$$
\begin{aligned}
& \text { Prothm \#2 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
F_{1} \cos \beta+F_{2} \cos \beta-0 \\
F_{1}=-F_{2}
\end{array} \\
& \sum F_{x}=0
\end{aligned}
$$

$$
\begin{aligned}
& U=\frac{F_{1}^{2} L_{1}}{2 E_{1} A_{1}}+\frac{F_{1}^{2} L_{2}}{2 E_{2} A_{2}}= \\
& =\left(\frac{P^{2}}{4 \sin ^{2} \beta} \cdot \frac{\alpha}{\sin \beta} \cdot \frac{1}{2 E A}\right) \times 2 \\
& =\frac{T^{2} 0}{4 \sin ^{2} \beta} \frac{1}{E A}=\frac{1}{2} P u \Rightarrow u=0.0048 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
& \text { < }
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{4}=0 \quad f_{1} \cos \beta+f_{2} \cos \beta-1=0 \\
& \sum F_{x}=0-f_{1} \sin \beta+f_{2} \sin \beta=0 \\
& \begin{array}{l}
\quad f_{1}=f_{2} \\
2 f_{1} \cos \beta=1 \\
f_{1}=\frac{1}{2 \cos \beta}=\frac{1}{\sqrt{3}}=f_{2}=0.517
\end{array} \\
& "{ }^{\prime \prime}{ }^{\prime \prime} v=f_{1} \frac{F_{1} L}{E A}+f_{2} \frac{F_{2} L}{E A} \\
& =\frac{1}{\sqrt{3}} \frac{P_{a}}{2 \sin ^{2} \beta} \frac{1}{E A}+\frac{1}{\sqrt{3}}\left(\frac{-P_{a}}{2 \sin ^{2} \beta} \frac{1}{E A}\right) \\
& \Rightarrow v=0
\end{aligned}
$$

Name: \qquad Solution Instructor: Siegmund Sarkar Susilo (Print)

PROBLEM \#3 (25 points)

Consider that three wood planks of cross section $\mathbf{a}=\mathbf{2} \mathbf{i n}$. by $\mathbf{b = 4} \mathbf{i n}$. and length $\mathbf{L = 6} \mathbf{f t}$ are available to construct a column structure to carry an axial load. Given the three planks of wood and a few nails you can construction the two columns shown below. Assume that the ends of the column act as pin supports, and that wood possesses an elastic modulus of $\mathrm{E}=\mathbf{1 , 0 0 0} \mathbf{k s i}$.

Given the two options which one should be selected such that the largest load \mathbf{P} can be sustained. Your answers need to be based on calculated numbers.

\qquad Solution \qquad
Problem $\# 3$

$$
P=\frac{\pi^{2} E I}{L_{\text {eff }}^{2}}
$$

$\operatorname{Cose} A:$

$$
\begin{aligned}
& I_{x}=\frac{6 \cdot 4^{3}}{12}=32 \mathrm{~m}^{4} \\
& I_{y}=\frac{4 \cdot 6^{3}}{12}=72 \mathrm{~m}^{4} \\
& P=\frac{\pi^{2} E I_{x}}{L^{2}}=60 \mathrm{~K} \mathrm{~K}_{p} \\
& P=\frac{\pi^{2} E I_{y}}{L^{2}}=137 \mathrm{Kip}
\end{aligned}
$$

$\operatorname{Cos} B$

$$
\begin{aligned}
& I_{x}=\frac{8 \cdot 4^{3}}{R}-\left[\frac{4 \cdot 1^{3}}{12}+1.5^{2} \cdot(1 \cdot 4)\right] \cdot 2=25 \mathrm{in}^{4} \\
& I_{y}=\frac{4 \cdot 8^{3}}{12}-\left[\frac{1 \times 4^{3}}{12}\right] \cdot 2=160 \mathrm{in}^{4} \\
& P=\frac{\pi^{2} E I_{x}}{L^{2}}=45 K_{i p} \\
& P=\frac{\pi^{2} G I_{y}}{L^{2}}=304 \mathrm{Kip}
\end{aligned}
$$

\Rightarrow Longer lond is 60 Kip

Name: \qquad Solution \qquad

PROBLEM \#4a (10 points)

A state of plane stress is given as: $\sigma_{x}=\mathbf{1 0 M P a}, \sigma_{y}=\mathbf{2 M P a}, \mathbf{r}_{x y}=\mathbf{2 M P a}$.
Check the correct answer
If the material is a ductile metal with yield strength of $\sigma_{\text {Yield }}=10.0 \mathrm{MPa}$:
(3 pts) Following the Mises criterion, yielding occurs \square or does not occur \square. (3 pts) Following the Tresa criteriaon, yielding occurs \square or does not occur \square.

If the material is a brittle ceramic with ultimate strength of $\sigma_{\text {Ultimate }}=\mathbf{1 2 . 0} \mathbf{M P a}$:

$$
\begin{aligned}
& \text { (3 pts) Fracture of occurs } \square \text { or does not occur } \square \text {. } \\
& \begin{array}{l}
\text { Problem 4(6) } \\
\sigma_{x}=10 \mathrm{MPa} \\
\sigma_{4}=2 \mathrm{MPa}
\end{array} \quad \tau_{x 4}=2 \mathrm{MPa} \\
& \sigma_{\text {ovg }}=6 \mathrm{MPa} \quad R=4.4 \mathrm{MPa} \\
& \sigma_{1}=10.4 \mathrm{MPa} \\
& \sigma_{2}=1.5 \mathrm{MPa} \\
& \bar{\sigma}_{M}^{2}=\sigma_{1}^{2}-\sigma_{1} \sigma_{2}+\sigma_{2}^{2} \\
& \sigma_{M}=9.7 \mathrm{MPe}<\sigma_{y} \Rightarrow \text { no yisld } \\
& \sigma_{1}>0 \quad \sigma_{2}>0 \Rightarrow \tau_{\text {mack }}^{\text {obs }}=\frac{\sigma_{1}}{2}=5.2 \mathrm{MPR} \\
& 5.2 \mathrm{MPa}>\sigma_{y} / 2 \Rightarrow y_{i x l}
\end{aligned}
$$

PROBLEM \#4b (5 points) Multiple Choice, no partial credit

While hooking a fish, a fishing rod is bend to a quarter circle of radius $\mathrm{r}=2.0 \mathrm{~m}$. Consider that the fishing rod possesses a diameter of 5.0 mm and an elastic modulus of $\mathrm{E}=100$ GPa.

The maximum value of flexural stress is the rod is $50 \mathrm{MPa} \square$.
The maximum value of flexural stress is the rod is $125 \mathrm{MPa} \nabla$.
The maximum value of flexural stress is neither of the above \square.
The flexural stresses cannot be determined based on the information provided \square.

Fish pulls
PROBLEM \#4c (5 points) Multiple Choice, no partial credit
\qquad Solution

A tube is subjected to torsion. From the options shown below, select the correct answer for the stress distribution in a tube cross section.

PROBLEM \#4d (6 points) Multiple Choice, no partial credit

A bar is clamped between two walls. The bar is initially free of stress. Then, the system is heated to a temperature $\mathbf{T}_{\mathbf{2}}$. The stresses that develop in the bar depend on:
(check all that apply)
The coefficient of thermal expansion α of the material the bar is made of. \square The elastic modulus \mathbf{E} of the material the bar is made of. \square
The bar's length \mathbf{L}.
The bar's cross section area \mathbf{A}.
The initial temperature \mathbf{T}_{1} of the bar.

