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Exam 2

March 29, 2023 Name (Print) S oL U T219OMN

PROBLEM #1 (25 points)

Beam ABC is fixed at end A and is supported by a roller support at B. A concentrated force P acts at C. E
and I are constant along the beam. Use the second order integration method to calculate the following:

(a) Draw a free body diagram and write the equilibrium equations.

(b) Find the reactions on the beam at A and B in terms of P.

(c) Find the equation for the vertical displacement, v(x) using the x-direction shown in the figure,
throughout the beam in terms of P, L, E, and L.

(d) Find the slope (0) at point B in terms of P, L E, and L.
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PROBLEM #2 (25 points)

A cantilever beam BCD has a distributed load po acting between C and D.

(a) Draw a free body diagram and write the equilibrium equations.

(b) Use the superposition principle and the superposition tables provided to calculate the values of
the reactions at B and C. Leave your answers 1n terms of po and L.

(c) Draw the internal moment M(x) and shear force V(x) along the beam on the axes on the next
page. Label the values of M(x) and V(x) at points B, C, and D.
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Equilibrium

'(EM)p = —Mp + DyL = 0
| $F, = By = 0

| F, =B, + D, — P = (4)
L L e e L e e D e e e e e e e e e e e e o

4 unknowns and 3 equations - need 1 redundant load.

(b) Solve for reactions
Use Dy as redundant
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(c) Solve for displacement at C
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: Most Common Errors

[
1
1. Internal reactions need to be in terms of only the redundant |
load before taking the partial derivatives (in this example l

. . |
solution, Mg, M¢p, and F¢p were a function of only D, and |
were not a function of B, or Mg). :
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solved values of the reactions (D, = P/K) into the equations
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[ partial derivatives with respect to P.
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PROBLEM #4 — PART A (6 points)

Beam (i) and (ii) are identical cylindrical beams except that beam (i) is made of steel and beam (i1) is
made of aluminum. Egicel > Eatuminum.

Beam (a) Steel Beam (b) Aluminum
(a) Circle the correct relationship (b) Circle the correct relationship
between the maximum shear stresses in between the maximum shear stresses in
the two beams (1 point). the two beams (1 point).
|@x,a| < |Tmax,b| |Gmax,a| < |Gmax,b|
Tmax,al = |Tmax,b| =0

|Tmax,a

|Tmax,a| > |Tmax,b| |Gmax,a| > |Umax,b|

(c) Circle the correct relationship between
the maximum deflection v(x) in the two
beams (1 point).

vmax,al < |vn:¢;,b| ( 3* M 9\.
|vmax,a| = |vmax,b| =0 v \_ - ——S'L-_\
|vmax,a| = |vmax,b| #0 Q.E:l

|vmax,a| > |vmax,b| \Q 'Q.‘(‘ E
N 3 Symalel V.

(d) The diameter of the original beams is D. If the diameter is doubled to 2D, how will the new deflection
of the new beam (v, ) With diameter of 2D compare to the deflection of the original beam (vy,,,,) with
diameter of D (3 points):

% 1“\\:_31\_3:‘
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PROBLEM 4 — PART B (6 points)

Figures a-d indicate the deflection curve along four different beams.

a
vx) \i\__/
L2 L
C . |
v(x) 7
L/2 i

(1) Circle the deflection curve that
corresponds to the given beam and loading
conditions (2 points):

@ b ¢ d

(1) Circle the deflection curve that
corresponds to the given beam and loading
conditions (2 points):

a @ c d

(111) Circle the deflection curve that
corresponds to the given beam and loading
conditions (2 points):
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PROBLEM 4 — PART C (2 points)

Based on the assumptions used when deriving the equation for shear stress on a beam cross-
section (7 = VQ/It), choose the correct ranking for the accuracy of the shear stress predicted by
this equation for the three beams shown below:

a Y, L=10b P
A v %
Z—»X Z; 2b
>
b Y, L=5b |P b
Z N k4 .ZT
% — X Z 2b
Z
)
c Y L=5b |P >
A i 4
é —X z._T 2b
7
4b
Option 1 Option 2 Option 3 Option 4 Option 5
Most accurate a a b C All have
C a b the same
Least accurate C b C a accuracy
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PROBLEM 4 — PART D (6 points)

A beam is loaded with a distributed load from 0 to 4 m and a point load at 6 m.

Po P

5

AN
!

4 m 2m

Circle the value(s) that will be zero at x = Om (2 points):

v(0) M(0)

Circle the value(s) that will be zero at x = 4m (2 points):

V4 M(4) 0(4)

Circle the value(s) that will be zero at x = 6m (2 points):
" -.u
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PROBLEM 4 — PART E (5 points)

A simple cantilever is composed of two sections with an applied moment at the end.

i —— ) ULX U
: ‘ SM dn

: I, 3E LE M,
o fpm— D SM’iém.

(1) (3 points) In beam (a), the two sections both have the same Young’s moduli of E. In beam 'c)-
(b), one of the sections has a Young’s modulus of 3E, while one has a Young’s modulus of E

How does the total strain energy of these two beams compare?:
(\.) Mo L

( Utotala > Utotalb> \)q E ”‘G(‘—> 4—“‘*‘M°

Utotal a — Utotal b

U, <U L MQL
total,a total,b \Jb 3(3’&31 MO(Q:B N %‘ - %{

(11) (2 points) Circle the loading condition below (¢ to f) that would be used if we want to
calculate the deflection at point C in the y-direction.
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