Name (Print)	(Last)	(First)	
	(Lasi)	(1 1131)	
	Exa Novemb	nics of Materials m # 2 er 4, 2015 7:30 PM	
	0.00	7.50 7 101	
Instructions:			
Circle your lecturer's name	e and your class meeting	time.	
Krousgrill 11:30AM-12:20PM	Gonzalez 12:30-1:20PM	Ghosh 2:30-3:20PM	Zhao 4:30-5:20PM
Begin each problem in the use the yellow paper provide		camination sheets. If a	dditional space is required,
Work on one side of each s	sheet only, with only one	problem on a sheet.	
Write your name on every	sheet of the exam.		
Please remember that for y clearly.	ou to obtain maximum c	redit for a problem, yo	ou must present your solution
Accordingly,			
 coordinate system free body diagran units must be stat write down clarify state your assump 	ed, ying remarks,	ñed,	
If your solution does not fo	ollow a logical thought p	rocess, it will be assum	ned that it is in error.
When handing in the test, r	nake sure that ALL SHE	EETS are in the correct	sequential order.
Remove the staple and rest	aple, if necessary.		
		Prob. 1	
		Prob. 2	
		Prob. 3	
		Total	

		_			
nn		-Va	mina	tion	## "
IVIL	JEJ	LAG	HIIIIIC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	# 2

November 4, 2015

Instructor (circle) 1

Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM

PROBLEM NO. 1 (35 points max.)

A structural 'T' section is used as a cantilever beam (AC) to support a distributed load of 1 kip/ft and a point load of 50 kips as shown below.

- (a) Draw the shear force, V(x), and bending moment, M(x), diagrams for the beam
- (b) Determine the location (x,y) and magnitude of maximum tensile flexural stress.
- (c) Determine the location (x,y) and magnitude of maximum *compressive* flexural stress.

Please use the coordinate system already provided in the figures. The centroid O and the area moment of inertia are shown in the figure.

 ME 323 Examination #2
 Name
 Krousgrill
 Gonzalez

 November 4, 2015
 Instructor (circle)
 11:30AM-12:20PM
 12:30-1:20PM

 Ghosh 2:30-3:20PM
 Zhao 4:30-5:20PM

PROBLEM NO. 1 (continued)

ME	323	Exai	mina	tion	#2
IVIL	JEJ	LAGI	IIIIIC	luvii	TT Z

November 4, 2015

Instructor (circle) 11:30AM-12:20PM
Ghosh

2:30-3:20PM

Gonzalez 12:30-1:20PM Zhao

4:30-5:20PM

PROBLEM NO. 2 (35 points max.)

The cantilever beam ABC shown in the figure is fixed to a rigid wall at A and is supported by a roller at B. The beam is loaded by a concentrated force P located at C. Determine the value of the reaction R_B at support B using the superposition method and following the procedure described below.

- (a) Explain whether the problem is statically determinate or statically indeterminate.
- (b) The problem is broken down into two statically determinate sub-problems. Sub-problem I is shown below on the left-hand side, together with an expression for the corresponding deflection $v_I(x)$.

Draw the loading conditions of sub-problem II on the beam depicted on the right-hand side. These loading conditions must be such that the reaction at B can be determined by superposition of sub-problems I and II.

- (c) Solve for the deflection $v_{II}(x)$ of sub-problem II using an integration method.
- (d) Write the compatibility equation(s) relevant to the superposition method (that is the boundary conditions and/or continuity conditions that are not automatically satisfied by the subproblems).
- (e) Solve for the reaction R_B at support B.

ME 323 Examination #2

Name _____

November 4, 2015

Krousgrill 11:30AM-12:20PM

Gonzalez 12:30-1:20PM

Ghosh 2:30-3:20PM Zhao 4:30-5:20PM

PROBLEM NO. 2 (continued)

ME 323 Examination #2

Name _____

November 4, 2015

Krousgrill 11:30AM-12:20PM

Gonzalez 12:30-1:20PM

PROBLEM NO. 2 (continued)

Ghosh Zhao 2:30-3:20PM 4:30-5:20PM

ME 323 Examination #2

Name

November 4, 2015

Krousgrill
Instructor (circle) 11:30AM-12:20PM 1
Ghosh
2:30-3:20PM 4:3

12:30-1:20PM Zhao 4:30-5:20PM

Gonzalez

PROBLEM NO. 3 - Part A (6 points max.)

Beam (i) - STEEL

Beam (ii) - ALUMINUM

Beams (i) and (ii) shown above are identical, except that Beam (i) is made up of steel, and Beam (ii) is made up of aluminum. Note that $E_{steel} > E_{aluminum}$.

Let $(|\sigma|_{max})_i$ and $(|\sigma|_{max})_{ii}$ represent the maximum magnitude of flexural stress in Beams (i) and (ii), respectively. Circle the correct relationship between these two stresses:

a)
$$(|\sigma|_{max})_i > (|\sigma|_{max})_{ii}$$

b)
$$\left(\left| \sigma \right|_{max} \right)_i = \left(\left| \sigma \right|_{max} \right)_{ii}$$

c)
$$(|\sigma|_{max})_i < (|\sigma|_{max})_{ii}$$

Let $(|\tau|_{max})_i$ and $(|\tau|_{max})_{ii}$ represent the maximum magnitude of the xy-component of shear stress in Beams (i) and (ii), respectively. Circle the correct relationship between these two stresses:

a)
$$\left(\left|\tau\right|_{max}\right)_{i} > \left(\left|\tau\right|_{max}\right)_{ii}$$

b)
$$\left(\left|\tau\right|_{max}\right)_{i} = \left(\left|\tau\right|_{max}\right)_{i}$$

c)
$$\left(\left|\tau\right|_{max}\right)_{i} < \left(\left|\tau\right|_{max}\right)_{ii}$$

Let $(|\delta|_{max})_i$ and $(|\delta|_{max})_{ii}$ represent the maximum magnitude of deflection in Beams (i) and (ii), respectively. Circle the correct relationship between these two deflections:

a)
$$\left(\left| \delta \right|_{max} \right)_i > \left(\left| \delta \right|_{max} \right)_{ii}$$

b)
$$\left(\left| \delta \right|_{max} \right)_{i} = \left(\left| \delta \right|_{max} \right)_{ii}$$

c)
$$\left(\left|\delta\right|_{max}\right)_{i} < \left(\left|\delta\right|_{max}\right)_{ii}$$

November 4, 2015

Instructor (circle)

Krousgrill 11:30AM-12:20PM

Gonzalez 12:30-1:20PM

PROBLEM NO. 3 - Part B (10 points max.)

Ghosh 2:30-3:20PM

Zhao 4:30-5:20PM

cross section of beam

SIDE view of beam

A shear force V and bending moment M act at a cross section of a trapezoidal cross-sectioned beam. Consider the five points (i), (ii), (iii), (iv) and (v) on the beam cross section, as shown above. *Match up the state of stress at each of these five points with the stress elements (a) through (o) shown below.* If you choose "(o) NONE of the above", provide a sketch of the correct state of stress for your answer.

The state of stress at point (i) is ______

The state of stress at point (ii) is _____

The state of stress at point (iii) is _____

The state of stress at point (iv) is

The state of stress at point (v) is _____

(a) y	(b) <i>y</i>	(c) y	(d) <i>y</i> , <i>x</i>	(e) <i>y</i>
(f) y	(g) y	(h) "	(i) y x	(j) y x
(k) <i>y</i>	(I) <i>y</i>	(m) <i>y</i>	(n) y	(o) NONE of the above

November 4, 2015

Krousgrill Instructor (circle) 11:30AM-12:20PM 12:30-1:20PM Ghosh

Gonzalez

Zhao

PROBLEM NO. 3 - Part C (7 points max.)

The cantilevered beam is loaded with concentrated moments and concentrated forces. This loading is unknown; however, the bending moment diagram for the beam is known and provided above.

- a) Determine the maximum value of the magnitude of internal shear force V in the beam.
- b) If the beam has a square cross section with a cross-sectional area of $A = 2 ft^2$, determine the maximum value of the magnitude of shear stress τ_{xv} in the beam?

November 4, 2015

| Krousgrill | Gonzalez | 12:30-1:20PM | 12:30-1:20PM | Ghosh | Zhao | 2:30-3:20PM | 4:30-5:20PM |

PROBLEM NO. 3 - Part D (7 points max.)

At a given location along a beam, it is known that a shear force of V = 4 kips acts in the y-direction on the beam's triangular cross section. Determine the shear stress at O on the cross section of the beam.