\qquad

ME 323 EXAM \#2
 FALL SEMESTER 2012
 8:00 PM - 9:30 PM

Oct. 31, 2012

Instructions

1. Begin each problem in the space provided on the examination sheets. If additional space is required, use the paper provided. Work on one side of each sheet only, with only one problem on a sheet.
2. Each problem is of value as indicated below.
3. To obtain maximum credit for a problem, you must present your solution clearly. Accordingly:
a. Identify coordinate systems
b. Sketch free body diagrams
c. State units explicitly
d. Clarify your approach to the problem including assumptions
4. If your solution cannot be followed, it will be assumed that it is in error.

Prob. 1
(35)

Prob. 2 _ (33)

Prob. 3 _ (32)

Total (100)

PROBLEM \#1 - SOLUTION

Consider the beam shown below that is supported by a roller at its left end A and a pin joint at its midpoint B . A constant, downward force/length loading p_{0} acts along the left half of the beam, and an upward concentrated force P acts at its right end C .
(a) Determine the reactions for the beam.
(b) Determine the deflection $v(x)$ of the neutral axis of the beam.
(c) Determine the rotations θ_{A} and θ_{B} of the beam deflection at locations A and B . Use the following parameters in your solution: $a=2 \mathrm{ft}, p_{0}=2 \mathrm{kips} / f t$ and $P=5 \mathrm{kips}$. Leave the flexural rigidity EI as a variable in your solution.

Equilibrium

Deflection

AB: $\quad V(x)=V(0)+\int_{0}^{x} p(s) d s=A_{y}-2 x=7-2 x$
$M(x)=M(0)+\int_{0}^{x} V(s) d s=0+\int_{0}^{x}(7-2 s) d s=7 x-x^{2}$
$\theta(x)=\theta(0)+\frac{1}{E I} \int_{0}^{x} M(s) d s=\theta_{A}+\frac{1}{E I}\left(\frac{7}{2} x^{2}-\frac{1}{3} x^{3}\right)$
$v(x)=v(0)+\int_{0}^{x} \theta(s) d s=\theta_{A} x+\frac{1}{E I}\left(\frac{7}{6} x^{3}-\frac{1}{12} x^{4}\right)$
B: $\quad V\left(2^{-}\right)=3 ; \quad V\left(2^{+}\right)=V\left(2^{-}\right)+B_{y}=-5$
$M(2)=10$

$$
\begin{aligned}
& \theta(2)=\theta_{B}=\theta_{A}+\frac{34}{3 E I} \\
& v(2)=0=2 \theta_{A}+\frac{8}{E I} \Rightarrow \theta_{A}=-\frac{4}{E I} \Rightarrow \theta_{B}=\frac{22}{3 E I}
\end{aligned}
$$

Therefore, for $0<x<2$: $v(x)=\frac{1}{E I}\left(-\frac{1}{12} x^{4}+\frac{7}{6} x^{3}-4 x\right)$
BC: $\quad V(x)=V\left(2^{+}\right)+\int_{2}^{x} p(s) d s=-5+0=-5$

$$
\begin{aligned}
M(x) & =M(2)+\int_{2}^{x} V(s) d s=10-5(x-2)=20-5 x \\
\theta(x) & =\theta(2)+\frac{1}{E I} \int_{2}^{x} M(s) d s=\frac{22}{3 E I}+\frac{1}{E I}\left[20(x-2)-\frac{5}{2}\left(x^{2}-2^{2}\right)\right] \\
& =\frac{1}{E I}\left(-\frac{68}{3}+20 x-\frac{5}{2} x^{2}\right)
\end{aligned}
$$

$$
v(x)=v(2)+\int_{2}^{x} \theta(s) d s=\frac{1}{E I}\left[-\frac{68}{3}(x-2)+10\left(x^{2}-2^{2}\right)-\frac{5}{6}\left(x^{3}-2^{3}\right)\right]
$$

$$
v(x)=\frac{1}{E I}\left(-\frac{5}{6} x^{3}+10 x^{2}-\frac{68}{3} x+12\right)
$$

ALTERNATE SOLUTION
AB: $\sum M_{E}=M(x)+\left(p_{0} x\right)\left(\frac{x}{2}\right)-A_{y} x=0 \Rightarrow M(x)=-x^{2}+7 x$

$$
E I \frac{d^{2} v_{1}}{d x^{2}}=M(x)=-x^{2}+7 x
$$

$$
E I \frac{d v_{1}}{d x}=-\frac{x^{3}}{3}+\frac{7 x^{2}}{2}+C_{1}
$$

$$
E I v_{1}=-\frac{x^{4}}{12}+\frac{7 x^{3}}{6}+C_{1} x+C_{2}
$$

BC: $\sum M_{E}=M(x)+\left(a p_{0}\right)\left(x-\frac{a}{2}\right)-A_{y} x-B_{y}(x-a) \Rightarrow M(x)=-5 x+20$

$$
E I \frac{d^{2} v_{2}}{d x^{2}}=M(x)=-5 x+20
$$

$$
\begin{aligned}
& E I \frac{d v_{2}}{d x}=-\frac{5 x^{2}}{2}+20 x+C_{3} \\
& E I v_{2}=-\frac{5 x^{3}}{6}+10 x^{2}+C_{3} x+C_{4}
\end{aligned}
$$

Apply boundary/continuity conditions

$$
\begin{aligned}
& v_{1}(0)=0=C_{2} \\
& v_{1}(a)=0=\frac{1}{E I}\left(-\frac{a^{4}}{12}+\frac{7 a^{3}}{6}+C_{1} a+C_{2}\right) \Rightarrow C_{1}=\frac{a^{3}}{12}-\frac{7 a^{2}}{6}=-4 \\
& v_{2}(a)=0=\frac{1}{E I}\left(-\frac{5 a^{3}}{6}+10 a^{2}+C_{3} a+C_{4}\right) \Rightarrow \\
& C_{4}=\frac{5 a^{3}}{6}-10 a^{2}-C_{3} a=-\frac{100}{3}-2 C_{3} \\
& \frac{d v_{1}}{d x}(a)=\frac{d v_{2}}{d x}(a) \Rightarrow \frac{1}{E I}\left(-\frac{a^{3}}{3}+\frac{7 a^{2}}{2}+C_{1}\right)=\frac{1}{E I}\left(-\frac{5 a^{2}}{2}+20 a+C_{3}\right) \Rightarrow \\
& C_{3}=-\frac{a^{3}}{3}+6 a^{2}-20 a+C_{1}=-\frac{68}{3}
\end{aligned}
$$

Therefore,

$$
C_{4}=-\frac{100}{3}-2\left(-\frac{68}{3}\right)=12
$$

Summary:

$$
\begin{aligned}
& 0<x<a: v(x)=v_{1}(x)=\frac{1}{E I}\left(-\frac{x^{4}}{12}+\frac{7 x^{3}}{6}-4 x\right) \\
& a<x<2 a: v(x)=v_{2}(x)=\frac{1}{E I}\left(-\frac{5 x^{3}}{6}+10 x^{2}-\frac{68}{3} x+12\right)
\end{aligned}
$$

Also:

$$
\begin{aligned}
& \theta_{A}=\frac{d v_{1}}{d x}(0)=\frac{C_{1}}{E I}=-\frac{4}{E I} \\
& \theta_{B}=\frac{d v_{1}}{d x}(a)=\frac{1}{E I}\left(-\frac{a^{3}}{3}+\frac{7 a^{2}}{2}+C_{1}\right)=\frac{22}{3 E I}
\end{aligned}
$$

Name: \qquad Instructor: Krousgrill/Raman Siegmund Bilal (Print)
(Last) (First) (Circle your instructor)

PROBLEM \#2 (33 points)

A beam $\boldsymbol{A B}$ of length \boldsymbol{L} is loaded and supported as shown in the Figure below. Determine the support reaction at \boldsymbol{A}. Assume $\boldsymbol{E l}$ is constant for the beam.

Solution:
The FBD is shown in the Figure below.

Write the $4^{\text {th }}$ Order deflection equation
$\left(E I v^{\prime \prime}\right)^{\prime \prime}=\frac{\omega_{0}}{L}(x-L)$
integrating 4 times

$$
\begin{aligned}
& \left(E I v^{\prime \prime}\right)^{\prime}=\frac{\omega_{0}}{2 L}(x-L)^{2}+C_{1}-->(4) \\
& \left(E I v^{\prime \prime}\right)=\frac{\omega_{0}}{6 L}(x-L)^{3}+C_{1} x+C_{2}-->(5) \\
& \left(E I \frac{d v}{d x}\right)=\frac{\omega_{0}}{24 L}(x-L)^{4}+\frac{C_{1} x^{2}}{2}+C_{2} x+C_{3}-->(6) \\
& (E I v)=\frac{\omega_{0}}{120 L}(x-L)^{5}+\frac{C_{1} x^{3}}{6}+\frac{C_{2} x^{2}}{2}+C_{3} x+C_{4}-->(7)
\end{aligned}
$$

Boundary Conditions
(i) @ $x=0 ; \quad v=0$
(ii) @ $x=0 ; \quad M=0$
(iii) @ $x=L ; v^{\prime}=0$
(iv) @ $x=L ; \quad v=0$
applying $B C \# 1$: @ $x=0 ; v=0$
$\operatorname{EIv}(0)=0=\frac{\omega_{0}}{120 L}(0-L)^{5}+\frac{C_{1}(0)^{3}}{6}+\frac{C_{2}(0)^{2}}{2}+C_{3}(0)+C_{4}$
$C_{4}=\frac{\omega_{0} L^{4}}{120}$
applying $B C \# 2$: @ $x=L ; M=0$
$E I \frac{d^{2} v(0)}{d x^{2}}=0=\frac{\omega_{0}}{6 L}(0-L)^{3}+C_{1}(0)+C_{2}$
$C_{2}=\frac{\omega_{0} L^{2}}{6}$
applying $B C \# 3$: @ $x=L ; v^{\prime}=0$
$E I \frac{d \nu(0)}{d x}=0=\frac{\omega_{0}}{24 L}(L-L)^{4}+\frac{C_{1}(L)^{2}}{2}+\left(\frac{\omega_{0} L^{2}}{6}\right) L+C_{3}$
$C_{3}=-\frac{C_{1} L_{2}}{2}-\frac{\omega_{0} L^{3}}{6}$
applying $B C \# 4$: @ $x=L ; v=0$
$\operatorname{EIv}(0)=0=\frac{\omega_{0}}{120 L}(L-L)^{5}+\frac{C_{1}(L)^{3}}{6}+\frac{C_{2}(L)^{2}}{2}+C_{3} L+C_{4}$
$0=\frac{C_{1} L^{3}}{6}+\left(\frac{\omega_{0}(L)^{2}}{6}\right) \frac{L^{2}}{2}+\left(\frac{-C_{1} L^{2}}{2}-\frac{\omega_{0} L^{3}}{6}\right) L+C_{4}$
$\frac{C_{1} L^{3}}{6}+\frac{\omega_{0} L^{4}}{12}-\frac{C_{1} L^{3}}{2}-\frac{\omega_{0} L^{4}}{6}+\frac{\omega_{0} L^{4}}{120}=0$
$C_{1}=-\frac{9}{40} \omega_{0} L$
applying $B C \# 5$: @ $x=0 ; V=\frac{d M}{d x}=\frac{d^{3} v}{d x^{3}}=A_{y}$ (equal to the shear force)
$\left(E I \nu^{\prime \prime}\right)^{\prime}=\frac{\omega_{0}}{2 L}(x-L)^{2}+C_{1}$
$A_{y}=\frac{\omega_{0}}{2 L}(0-L)^{2}-\frac{9}{40} \omega_{0} L$
$A_{y}=\frac{11}{40} \omega_{0} L$

PROBLEM \#2

ALTERNATE SOLUTION

$$
\begin{aligned}
& V(x)=V(0)+\int_{0}^{x} p(s) d s=A_{y}-w_{0} \int_{0}^{x}\left(1-\frac{s}{L}\right) d s=A_{y}-w_{0} x+\frac{w_{0} x^{2}}{2 L} \\
& M(x)=M(0)+\int_{0}^{x} V(s) d s=0+\int_{0}^{x}\left(A_{y}-w_{0} s+\frac{w_{0} s^{2}}{2 L}\right) d s=A_{y} x-\frac{w_{0} x^{2}}{2}+\frac{w_{0} x^{3}}{6 L} \\
& \theta(x)=\theta(0)+\frac{1}{E I} \int_{0}^{x} M(s) d s=\theta_{A}+\frac{1}{E I}\left(\frac{A_{y} x^{2}}{2}-\frac{w_{0} x^{3}}{6}+\frac{w_{0} x^{4}}{24 L}\right) \\
& v(x)=v(0)+\int_{0}^{x} \theta(s) d s=\theta_{A} x+\frac{1}{E I}\left(\frac{A_{y} x^{3}}{6}-\frac{w_{0} x^{4}}{24}+\frac{w_{0} x^{5}}{120 L}\right)
\end{aligned}
$$

Enforce boundary conditions:

$$
\begin{align*}
& \theta(L)=0=\theta_{A}+\frac{1}{E I}\left(\frac{A_{y} L^{2}}{2}-\frac{w_{0} L^{3}}{6}+\frac{w_{0} L^{4}}{24 L}\right) \Rightarrow \theta_{A}=\frac{1}{E I}\left(-A_{y}+\frac{w_{0} L}{4}\right) \frac{L^{2}}{2} \tag{1}\\
& v(L)=0=\theta_{A} L+\frac{1}{E I}\left(\frac{A_{y} L^{3}}{6}-\frac{w_{0} L^{4}}{24}+\frac{w_{0} L^{5}}{120 L}\right) \Rightarrow \theta_{A}=\frac{1}{E I}\left(-A_{y}+\frac{w_{0} L}{5}\right) \frac{L^{2}}{6} \tag{2}
\end{align*}
$$

Equations (1) and (2):

$$
\frac{1}{E I}\left(-A_{y}+\frac{w_{0} L}{4}\right) \frac{L^{2}}{2}=\frac{1}{E I}\left(-A_{y}+\frac{w_{0} L}{5}\right) \frac{L^{2}}{6} \Rightarrow A_{y}=\frac{11 w_{0} L}{40}
$$

\qquad

PROBLEM \#3 (32 points total)

The rectangular cross section of a beam has an internal bending moment of $100 \mathrm{~N}-\mathrm{m}$ and an internal shear force (downwards) of 2000 N acting on it as shown below. The cross sectional dimensions of the beam are shown below. Point P is a point located at a height $\mathrm{h} / 4$ up from the neutral axis.

a. Find the values of the normal stresses and shear stresses $\sigma_{x x}, \tau_{x y}, \sigma_{y y}$ (in MPa) for the material element located at point P shown above. Show these stress vectors (magnitude and direction) on a properly oriented material element.

Ans:

b. Sketch a Mohr's circle for this stress state of stress, indicating clearly on it the coordinates of the center the circle, the radius of the circle, the coordinates of points \mathbf{X} and \mathbf{Y} representing the state of stress.
$(-4.2,0)$
$(-3,-2.25) X \quad$ S2 (-2.7,-1.5)

\qquad
c. Determine the principal stresses $\sigma_{p 1}, \sigma_{p 2}$. Depict the material element and the stress components of the principal stress state (magnitude and direction) on a properly oriented material element in the p1-p2 configuration. Clearly indicate the transformation angle $\theta_{p 1}$ relative to the $+\boldsymbol{x}$-axis.
$2 \theta_{p 1}=180+56.44=236.44$
$\theta_{p 1}=118.22$

d. Determine the maximum in-plane shear stress $\tau_{\text {max }}$. Depict the material element and the stress components of the maximum shear stress state (magnitude and direction) on a properly oriented material element in the $\boldsymbol{s 1} 1-s 2$ configuration. Clearly indicate the transformation angle $\theta_{s 1}$ relative to the $\boldsymbol{+ x}$-axis.
$2 \theta_{s 1}=90+56.44=146.44$
$\theta_{s 1}=73.22$

