PROBLEM \#1 (33 points)

1) The beam shown below is loaded by a distributed load $\mathrm{q}_{0}=10 \mathrm{kN} / \mathrm{m}$ and a moment $\mathrm{M}=50 \mathrm{kNm}$.

- Determine and plot the shear force and bending moment diagrams. Your answer needs to be expressed as a $\mathrm{V}(\mathrm{x})$ and $\mathrm{M}(\mathrm{x})$ diagram with characteristic values (any local maxima and minima as well as values of discontinuities) clearly stated.

2) The beam possesses a T-shaped cross section.

- Determine the location along the beam axis where the maximum value of flexural stress occurs and determine the maximum value of flexural stress;
- Determine the distribution of the flexural stresses on the beam cross-section. Document your answer in a drawing that depicts the distribution of these stresses in the beam cross-section and indicate minimum and maximum values.

Reaction Forces
$R_{A}=-17.5 \mathrm{kN}$
$R_{B}=37.5 \mathrm{kN}$

$\max [M(x)]=-35 \mathrm{kNm}$
at $\quad x=2.0 m$

Centroid:

$\bar{\eta}=\frac{25(20 \times 10)+10(20 \times 10)}{2(20 \times 10)}=17.5 \mathrm{~mm}$

Second area moment:

$I=\frac{10 \times 20^{3}}{12}+7.5^{2}(10 \times 20)+\frac{20 \times 10^{3}}{12}+7.5^{2}(10 \times 20)=30832 \mathrm{~mm}^{4}$

Flexural Stresses:

$$
\begin{aligned}
& \sigma_{x}=-\frac{(-35 \mathrm{kNm})(-17.5 \mathrm{~mm})}{30832 \mathrm{~mm}^{4}}=-19.8 \frac{\mathrm{KN}}{\mathrm{~mm}^{2}} \\
& \sigma_{x}=-\frac{(-35 \mathrm{kNm})(12.5 \mathrm{~mm})}{30832 \mathrm{~mm}^{4}}=14 \frac{\mathrm{KN}}{\mathrm{~mm}^{2}}
\end{aligned}
$$

Problem \#2

The beam shown below has a constant cross sectional area and modulus of elasticity ($\mathrm{EI}=$ constant). It is supported by a roller at A and fixed into the wall at B. The beam is loaded vertically downward by a distributed load w_{0} as shown. Determine:

- The reaction forces and moment at the supports

$\sum F_{y}=0 \rightarrow R_{1}+R_{2}=w_{0} L$
$\sum M_{R_{2}}=0 \rightarrow R_{1}^{*} L-w_{0} L^{2} / 2-M_{2}=0$
2 equations and three unknowns: R_{1}, R_{2}, M_{2}
$q(x)=-w_{0}$
$V(x)=-w_{0} x+R_{1}$
$M(x)=-w_{0} \frac{x^{2}}{2}+R_{1} x+M_{1}$
$M_{1}=0$
$E I v^{\prime}(x)=\frac{R_{1}}{2} x^{2}-\frac{w_{0}}{6} x^{3}+C_{1}$
$E I v(x)=\frac{R_{1}}{6} x^{3}-\frac{w_{0}}{24} x^{4}+C_{1} x+C_{2}$
Boundary Conditions are:

1. $x=0, v=0$
2. $x=L, v=0$
3. $x=L, v^{\prime}=0$
using boundary condition $1 \rightarrow C_{2}=0$
using boundary condition $3 \rightarrow C_{1}=-\frac{R_{1}}{2} L^{2}+\frac{w_{0}}{6} L^{3}$
Substitute for C_{1} from above in deflection equation and then use boundary condition 3, we obtain $R_{1}=\frac{3 w_{0}}{8} L$
Substitute for R_{1} in sum of forces in the y direction results in:
$R_{2}=\frac{5 w_{0}}{8} L$
Substitute for R_{1} in sum of the moments at the wall results in:
$M_{2}=-\frac{w_{0}}{8} L^{2}$

Problem \#3

At a point in a structure the stress state is determined to be plane stress and characterized by $\sigma_{x}=\mathbf{2 0} \mathrm{MPa}, \sigma_{y}=\mathbf{4 0} \mathrm{MPa}, \mathrm{T}_{\mathrm{xy}}=\mathbf{5 0} \mathrm{MPa}$.

Determine:

- The values of the first and second principal stresses; and draw a properly oriented material element for this stress state;
- The value of the maximum in-plane shear stress; and draw a properly oriented material element for this stress state;
- Draw Mohr's circle for the stress state, and on Mohr's circle mark the locations representing the stress state in ($x-y$) coordinates, mark the locations representing the principal stresses and the maximum shear stress.

SOLUTION: Principal stresses are given by

$$
\begin{aligned}
& \sigma_{1,2}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\
& \sigma_{1,2}=\frac{20+40}{2} \pm \sqrt{\left(\frac{20-40}{2}\right)^{2}+(50)^{2}}=30 \pm \sqrt{10^{2}+50^{2}}=30 \pm 50.9 \\
& \sigma_{1}=30+50.9=81 M P a \\
& \sigma_{2}=30-50.9=-21 M P a
\end{aligned}
$$

The orientation of the principal stress plane is given by:

$$
\begin{aligned}
& \tan \left(2 \theta_{p}\right)=\frac{\tau_{x y}}{\left(\sigma_{x}-\sigma_{y}\right) / 2}, \text { substituting the values we get } \\
& \tan \left(2 \theta_{p}\right)=\frac{50}{(20-40) / 2}=-5 \\
& \theta_{p 1}=-3932 \\
& \theta_{p 2}=\theta_{p 1}+90^{\circ}=-39.3^{\circ}+90=500^{0}-39.3^{2}
\end{aligned}
$$

Having found the principal stress values and the orientation of the principal plane, a material element can be drawn as shown on the side.

The value of maximum in-plane shear stress can be calculated using the following:
$\tau_{\max }=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}$
$\tau_{\text {max }}=\sqrt{\left(\frac{20-40}{2}\right)^{2}+50^{2}}$
$\tau_{\text {max }}=50.99 \mathrm{MPa} \approx 51 \mathrm{MPa}$
The orientation of the maximum in-plane shear stress is given by:
$\tan \left(2 \theta_{s}\right)=\frac{-\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)}{\tau_{x y}}$
$\tan \left(2 \theta_{s}\right)=\frac{-\left(\frac{20-40}{2}\right)}{50}=\frac{1}{5}$

$\theta_{s 1}=5.6^{0}$
$\theta_{s 2}=\theta_{s 1}+90^{\circ}=5.6+90=95.6^{\circ}$
On the plane of maximum in-plane shear stress the normal stresses are the average normal stress given
by $\sigma_{a v g}=\frac{\sigma_{x}+\sigma_{y}}{2}=\frac{20+40}{2}=30 M P a$. With this we can plot the material element for the maximum in-plane shear stress as shown on the side.

Now Mohr circle can be drawn as shown below:

