PROBLEM \#1 (22 points)

A solid brass core is connected to a hollow rod made of aluminum. Both are attached at each end to a rigid plate as shown in Fig. 1. The moduli of aluminum and brass are $E_{\mathrm{A}}=11,000 \mathrm{ksi}, E_{\mathrm{B}}=15,000 \mathrm{ksi}$, and the coefficients of thermal expansion are $\alpha_{A}=13 \times 10^{-6} /{ }^{\circ} \mathrm{F}, \alpha_{B}=12 \times 10^{-6} /{ }^{\circ} \mathrm{F}$, respetively. The cross section areas of aluminum and brass are $A_{\mathrm{A}}=2 \mathrm{in}^{2}$ and $A_{\mathrm{B}}=1 \mathrm{in}^{2}$, respectively. The core and the sleeve are stress free at the reference temperature. If the core is heated by $100^{\circ} \mathrm{F}$ and the temperature of the sleeve is held constant, calculate:

1) The axial force and average axial stress (x direction) in each member.
2) The elongation of the composite bar in the x direction.
3) What should be the magnitude of the force F in Fig. 1 to prevent the elongation of the composite bar in the x direction?

Hints: Ignore the radial expansion due to Poisson's ratio effect.
For 1) and 2) use $F=0$

Fig. 1

Solution:

a) $F=0$

From the FBD,

$$
\begin{equation*}
\Sigma F_{x}=F_{A}+F_{B}=0 \Rightarrow F_{A}=-F_{B} \tag{1.1}
\end{equation*}
$$

From the force-elongation equation,

$$
\begin{gather*}
e_{A}=\frac{F_{A} L_{A}}{A_{A} E_{A}} \tag{1.2}\\
e_{B}=\frac{F_{B} L_{B}}{A_{B} E_{B}}+\alpha_{B} \Delta T L_{B} \tag{1.3}
\end{gather*}
$$

The compatibility condition,

$$
\begin{equation*}
e_{A}=e_{B} \tag{1.4}
\end{equation*}
$$

Combine (1.1)-(1.4) to get,

$$
\begin{gathered}
F_{A}=10702 \mathrm{lb} \\
F_{B}=-10702 \mathrm{lb} \\
\sigma_{A}=5351 \mathrm{psi} \\
\sigma_{B}=10702 \mathrm{psi}
\end{gathered}
$$

b) From the compatibility equation,

$$
\begin{gather*}
e=e_{A}=e_{B} \tag{1.5}\\
e_{A}=\frac{F_{A} L_{A}}{A_{A} E_{A}}=0.01946 \mathrm{in} \tag{1.6}
\end{gather*}
$$

c) Use the same FBD,

$$
\begin{equation*}
\Sigma F_{x}=F+F_{A}+F_{B}=0 \Rightarrow F_{A}+F_{B}=-F \tag{1.7}
\end{equation*}
$$

The compatibility equation becomes,

$$
\begin{equation*}
e_{A}=e_{B}=0 \tag{1.8}
\end{equation*}
$$

Combine (1.2), (1.3), (1.7), (1.8) to get,

$$
\begin{gathered}
F_{A}=\frac{e_{A} A_{A} E_{A}}{L_{A}}=0 \mathrm{lb} \\
F_{B}=-\alpha_{B} \Delta T A_{B} E_{B}=-18000 \mathrm{lb} \\
F=-F_{B}=18000 \mathrm{lb}
\end{gathered}
$$

ME 323 Examination \# 1

February 15, 2017

Name
(Print) (Last) (First)
Instructor \qquad

PROBLEM \#2 (28 points)

A shaft is made up of three components: solid circular shafts (1) of length $2 L$ and diameter d; solid circular shaft (2) of length L and diameter $2 d$; and tubular shaft (3) of length L, outer diameter $3 d$ and inner diameter $2 d$. All three components are made of the same material having a shear modulus of G. Shafts (1) and (2) are connected by a thin, rigid connector C, whereas shafts (2) and (3) are connected by a rigid connector D. Shaft (1) is rigidly attached to ground at B. Shaft (3) is rigidly attached to ground at H . Torques T and $2 T$ are applied to C and D , respectively, as shown in the Fig. 2 (a).

Fig. 2 (a)

Cross-section at aa' as seen from right end

Fig. 2 (b)

Fig. 2 (c)

1) Determine the torque carried by each of the shaft components.
2) Determine the angle of rotation at connector C.
3) Show the stress element for the points $\mathrm{M}(x, 0.5 d, 0)$ and $\mathrm{N}(x, 0,0.5 d)$, whose locations on shaft (1) are also shown on Fig. 2 (b). Indicate both magnitudes and axes corresponding to the state of stress on Fig. 2 (c).
Express your final answers in terms of T, L, d and G.

Solution:

a) 1. Equilibrium.

FBD:

2. Torque/Rotation

$$
\begin{align*}
& \Delta \Phi_{1}=\frac{T_{1} \cdot 2 L}{G \cdot I p_{1}}, I p_{1}=\frac{\pi}{2}\left(\frac{d}{2}\right)^{4}=\frac{\pi}{32} d^{4} \Rightarrow \Delta \Phi_{1}=64 \cdot \frac{T_{1} \cdot L}{G \pi d^{4}} \tag{2.3}\\
& \Delta \Phi_{2}=\frac{T_{2} \cdot L}{G \cdot I p_{2}}, I p_{2}=\frac{\pi}{2}\left(\frac{2 d}{2}\right)^{4}=\frac{\pi}{2} d^{4} \Rightarrow \Delta \Phi_{2}=2 \cdot \frac{T_{2} \cdot L}{G \pi d^{4}} \tag{2.4}\\
& \Delta \Phi_{3}=\frac{T_{3} \cdot L}{G \cdot I p_{3}}, I p_{3}=\frac{\pi}{2}\left[\left(\frac{3 d}{2}\right)^{4}-\left(\frac{2 d}{2}\right)^{4}\right]=\frac{65}{32} \pi d^{4} \Rightarrow \Delta \Phi_{3}=\frac{32}{65} \cdot \frac{T_{3} \cdot L}{G \pi d^{4}} \tag{2.5}
\end{align*}
$$

3. Compatibility
$\Phi_{C}=\Phi_{B}+\Delta \Phi_{1}=\Delta \Phi_{1}\left(\Phi_{B}=0\right), \Phi_{D}=\Phi_{C}+\Delta \Phi_{2}=\Delta \Phi_{1}+\Delta \Phi_{2}, \Phi_{H}=\Phi_{D}+\Delta \Phi_{3}=0$

$$
\Rightarrow \Delta \Phi_{1}+\Delta \Phi_{2}+\Delta \Phi_{3}=0
$$

From (2.3) to (2.6), we have $64 \cdot \frac{T_{1} \cdot L}{G \pi d^{4}}+2 \cdot \frac{T_{2} \cdot L}{G \pi d^{4}}+\frac{32}{65} \cdot \frac{T_{3} \cdot L}{G \pi d^{4}}=0$

$$
\begin{equation*}
\Rightarrow 64 \mathrm{~T}_{1}+2 T_{2}+\frac{32}{65} T_{3}=0 \tag{2.7}
\end{equation*}
$$

4. Solve

With (2.1), (2.2) and (2.7), we can solve

$$
\left\{\begin{array}{l}
T_{1}=-0.023 T \\
T_{2}=0.977 T \\
T_{3}=-1.023 T
\end{array}\right.
$$

b) $\Phi_{C}=\Delta \Phi_{1}=64 \cdot \frac{T_{1} \cdot L}{G \pi d^{4}}=64 \cdot \frac{-0.023 T \cdot L}{G \pi d^{4}}=-0.468 \frac{T \cdot L}{G d^{4}}$ (radians)
c) Since the elements M and N are both at the circumference of the cross section at aa', and a negative torque $\left(T_{1}\right)$ has been applied, their states of stress are shown as below:

The magnitude of shear stresses $\left|\tau_{x z}\right|=\left|\tau_{x y}\right|=\left|\frac{T_{1} \cdot \frac{d}{2}}{I p_{1}}\right|=\left|\frac{-0.023 T \cdot \frac{d}{2}}{\frac{\pi d^{4}}{32}}\right|=0.117 \frac{T}{d^{3}}$

PROBLEM \#3 (26 points)

A truss is made up of members (1)-(3), with each member having a cross-sectional area of A and being made up of a material with a Young's modulus of E. Members (1)-(3) are connected to ground at pins C, B and H , respectively, and are connected together at pin D. A frictionless pulley is also attached to pin D . A block of weight W is supported by a cable that is pulled over the pulley and attached to ground at K. Pins B, C and H each have a cross-sectional diameter of d, and have a "single-sided" connection to ground. The pins are made of a material having a shear yield strength of τ_{Y}.
a) Determine the load carried by each member of the truss. Express your final answers in terms of, at most, A, E, W and a.
b) Determine the largest W that can be supported by the truss without failure at pins B, C or H . Use a factor of safety of $\mathrm{FS}=2$.

Solution:

a)

From the FBD,

$$
\begin{gather*}
\mathrm{F}_{D}=\sqrt{2} w \\
\Sigma F_{x}=0=>F_{1}+0.8 F_{2}=w \tag{3.1}\\
\Sigma F_{y}=0=>0.6 F_{2}+F_{3}=w \tag{3.2}
\end{gather*}
$$

For each truss,

$$
\begin{equation*}
\theta_{1}=0, \quad \theta_{2}=323^{\circ}, \quad \theta_{3}=270^{\circ}, \tag{3.3}
\end{equation*}
$$

From the force-elongation equation,

$$
\begin{align*}
& e_{1}=\frac{F_{1} L_{1}}{E_{1} A_{1}}=\frac{F_{1} 4 a}{E A} \tag{3.4}\\
& e_{2}=\frac{F_{2} L_{2}}{E_{2} A_{2}}=\frac{F_{1} 5 a}{E A} \tag{3.5}\\
& e_{3}=\frac{F_{3} L_{3}}{E_{3} A_{3}}=\frac{F_{1} 3 a}{E A} \tag{3.6}
\end{align*}
$$

Compatibility conditions,

$$
\begin{gather*}
e_{1}=u_{D} \cos \theta_{1}+v_{D} \sin \theta_{1}=u_{D} \tag{3.7a}\\
e_{2}=u_{D} \cos \theta_{2}+v_{D} \sin \theta_{2}=0.8 u_{D}-0.6 v_{D} \tag{3.7b}\\
e_{3}=u_{D} \cos \theta_{3}+v_{D} \sin \theta_{3}=-v_{D} \tag{3.7c}
\end{gather*}
$$

From (3.7a) to (3.7c) to get,

$$
\begin{equation*}
e_{2}=0.8 e_{1}+0.6 e_{3} \tag{3.8}
\end{equation*}
$$

Combine (3.4) to (3.6) with (3.8) to get,

$$
\begin{equation*}
5 F_{2}=\frac{16}{5} F_{1}+\frac{9}{5} F_{3} \tag{3.9}
\end{equation*}
$$

Solve (3.1), (3.2) and (3.9) to get,

$$
\begin{aligned}
& F_{1}=0.537 w \\
& F_{2}=0.578 w \\
& F_{3}=0.653 w
\end{aligned}
$$

b) From the failure theory,

$$
F S=\frac{\tau_{y}}{\tau_{\text {allow }}}
$$

The problem is for the single pin situation,

$$
V=F
$$

For point B,

$$
\tau_{B}=\frac{F_{2}}{A}=\frac{0.578 w}{\frac{\pi d^{2}}{4}}=\frac{\tau_{y}}{2}=>\left(w_{B}\right)_{\text {allow }}=0.678 \tau_{y} d^{2}
$$

For point C,

$$
\tau_{C}=\frac{F_{1}}{A}=\frac{0.537 w}{\frac{\pi d^{2}}{4}}=\frac{\tau_{y}}{2}=>\left(w_{C}\right)_{\text {allow }}=0.731 \tau_{y} d^{2}
$$

For point H,

$$
\tau_{H}=\frac{F_{3}}{A}=\frac{0.653 w}{\frac{\pi d^{2}}{4}}=\frac{\tau_{y}}{2}=>\left(w_{H}\right)_{\text {allow }}=0.601 \tau_{y} d^{2}
$$

Thus,

$$
w_{\text {allow }}=\text { smallest } w=\left(w_{H}\right)_{\text {allow }}=0.601 \tau_{y} d^{2}
$$

PROBLEM \#4 (24 Points):

4.1. A material point in a steel machine is subjected to the following stress state: $\sigma_{x}=60 \mathrm{MPa}$, $\sigma_{y}=-30 \mathrm{MPa}$, and $\tau_{x z}=-20 \mathrm{MPa}$. Which of the following stress elements represents the correct stress state of the material point?

(a)

30 MPa
(c)

30 MPa
(d)

Using $E=210 \mathrm{GPa}$ and $v=0.3$ for steel, $G=\frac{E}{2(1+v)}$, determine the strain components:
$\varepsilon_{x}=\frac{\sigma_{x}-v \sigma_{y}}{E}=0.00033$
$\varepsilon_{y}=\frac{\sigma_{y}-v \sigma_{x}}{E}=-0.00023$
$\varepsilon_{z}=\frac{-v\left(\sigma_{x}+\sigma_{y}\right)}{E}=-0.00043$
$\gamma_{x y}=\frac{\tau_{x y}}{G}=0$

$$
\begin{aligned}
& \gamma_{y z}=\frac{\tau_{y z}}{G}=0 \\
& \gamma_{x z}=\frac{\tau_{x z}}{G}=-0.00025
\end{aligned}
$$

4.2. A bimetallic bar with circular cross section consists of a shell A and a core B . The bimetallic bar is subjected to a torque T. The shear moduli of the core and shell are known to be $G_{\mathrm{A}}=2 G_{\mathrm{B}}$, and polar moment of inertia $I_{\mathrm{PA}}=0.5$ IPB.

Which figure shows the correct distribution of the twist angle in the cross section $a a$?

(a)

(b)

(c)

(d)

Which figure shows the correct distribution of the shear strain in the cross section $a a$?

(a)

(b)

(c)

(d)

Which figure shows the correct distribution of the shear stress in the cross section $a a$?

(a)

(b)

(c)

(d)
4.3. A stepped rod is composed of steel and brass which are joined by a rigid connector at B and are fixed at the two ends. The coefficients of thermal expansion for steel and brass are α_{S} and $\alpha_{B}\left(\alpha_{s}>\alpha_{B}\right)$, respectively. Consider two load conditions shown below, the rod is homogeneously heated with a temperature increase of ΔT in (1), and a force F is applied at the rigid connector while temperature is held constant in (2). Which of the following statements are correct? (More than one item can be selected)

(1)

A

B

C
(a) \#oth configurations (1) and (2) are statically indeterminate structures.
(b) (1) is a statically determinate structure and (2) is a statically indeterminate structure.
(c) The forces F_{S} (steel) and F_{B} (brass) in (1) are both zero
(d) The forces F_{S} (steel) and F_{B} (brass) in (1) are non-zero and are equal.
(e) The forces F_{S} (steel) and F_{B} (brass) in (1) are equal in magnitude and of opposite signs.
(f) The strains ε_{S} (steel) and ε_{B} (brass) in (1) are both zero.
(g) The strains $\varepsilon \mathrm{S}$ (steel) and ε_{B} (brass) in (1) are non-zero and are equal.
(h) The strains εS (steel) and ε_{B} (brass) in (1) are equal in magnitude and of opposite signs.
(i) The stresses σ_{S} (steel) and σ_{B} (brass) in (1) are both compressive.
(j) The stresses σ_{S} (steel) and σ_{B} (brass) in (1) are equal in magnitude and of opposite signs.
(k) The forces F_{S} (steel) and F_{B} (brass) in (2) are non-zero and are equal.
(1) The forces F_{S} (steel) and F_{B} (brass) in (2) are both compressive.
(m) The elongations e_{S} (steel) and e_{B} (brass) in (2) are equal.
(n) The elongations e_{S} (steel) and e_{B} (brass) in (2) are equal in magnitude and of opposite signs.
(o) The stresses σ_{S} (steel) and σ_{B} (brass) in (2) are equal in magnitude and of opposite signs.
(p) The solution of the stresses σ_{S} (steel) and σ_{B} (brass) in (2) depends on the cross sections, lengths, and elastsic moduli of steel and brass.

