\qquad

ME 323 MIDTERM EXAM 1

Spring 2011

8:00 PM - 9:00 PM

Instructions

1. Work each problem in the space provided.
2. Confine your work to the front side of the pages only.
3. Additional paper will be provided upon request.
4. Each problem is of equal value.
5. To obtain maximum credit for a problem, you must present your solution clearly. Accordingly:
a. Identify coordinate systems
b. Sketch free body diagrams
c. State units explicitly
d. Clarify your approach to the problem including assumptions
e. Clearly mark final answers with boxes
6. If your solution cannot be followed, it will be assumed that it is in error.

Prob. 1 \qquad

Prob. 2 \qquad

Prob. 3 \qquad

Total \qquad

Name: \qquad
(Print)
(Last)
(First)
(Circle) Div 1

Some useful formulas

$\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]+\alpha \Delta T$
$\gamma_{x y}=\frac{1}{G} \tau_{x y} \quad \gamma_{x z}=\frac{1}{G} \tau_{x z} \quad \gamma_{y z}=\frac{1}{G} \tau_{y z}$
$F S=\frac{\text { Failure Stress }}{\text { Allowable Stress }}$
$\tau=G \frac{\phi r}{L}$
$\phi=\frac{T L}{G J}$
$J_{\text {solid }}=\frac{\pi d^{4}}{32}$
$J_{\text {hollow }}=\frac{\pi\left(d_{o}^{4}-d_{i}^{4}\right)}{32}$
$e=\frac{F L}{E A}+L \alpha \Delta T$
\qquad

PROBLEM \#1 (40 points)

The bar $\mathbf{A B C}$ is a rigid body and it is held in place by two deformable bars ($\mathbf{A D}$ and $\mathbf{B E}$). Bars AD and BE are made of the same material and have the same cross sectional area. The length of $A D$ is twice the length of $B E$.

If a point moment $\boldsymbol{M}_{\mathbf{C}}$ is applied to point \mathbf{C}, find:
a. normal stress in the bar AD.
b. the minimum diameter of the pin at point \mathbf{D} to the nearest mm with a factor of safety $\mathbf{F S}=3$, if the material of the pin has shear strength of 400 MPa .

Name: \qquad
(Print)
(Last)
(First) Division: Susilo (Circle) Div 1

Koslowski
Div 2

Name: \qquad
(Print)
(Last)
(First) Division: Susilo
(Circle) Div 1
Koslowski
Div 2

Name: \qquad
(Print)
(Last)
(First) Division: Susilo
(Circle) Div 1
Koslowski
Div 2
\qquad

PROBLEM \#2 (40 points)

The steel shaft $\mathbf{A D}(G=80 \mathrm{GPa})$ is subjected to torsional loads at points \mathbf{B} and \mathbf{D}. The diameters are $d_{1}=50 \mathrm{~mm}$ and $\mathrm{d}_{2}=25 \mathrm{~mm}$.
(a) Determine the torque $\boldsymbol{T}_{\mathbf{D}}$ at \mathbf{D} that would make the rotation at \mathbf{C} equal to zero, that is make $\phi_{C}=\mathbf{0}$.
(b) Determine the stress at point \mathbf{E} and draw the state of stress in the stress element in the figure below.

Draw the state of stress of point \mathbf{E} in the stress element:

Name: \qquad
(Print)
(Last)
(First) Division: Susilo
(Circle) Div 1
Koslowski
Div 2

Name: \qquad
(Print)
(Last)
(First) Division: Susilo (Circle) Div 1

Koslowski
Div 2

Name: \qquad
(Print)
(Last)
(First) Division: Susilo (Circle) Div 1

Koslowski
Div 2
\qquad

Division: Susilo
(Circle) Div 1

Koslowski
Div 2

PROBLEM \#3 (20 points)

The two rod element shown in the figure below is stress free when they are assembled together. The temperature in element (2) is increased by ΔT such that the gap, d, is closed, find the value of ΔT in terms of $L_{1}, A_{1}, E_{1}, \alpha_{1}$ and $L_{2}, A_{2}, E_{2}, \alpha_{2}$

Name: \qquad
(Print)
(Last)
(First) Division: Susilo (Circle) Div 1

Koslowski
Div 2

Name: \qquad
(Print)
(Last)
(First) Division: Susilo (Circle) Div 1

Koslowski
Div 2

