Name:		
(Print)	(Last)	(First)

ME 323 MIDTERM EXAM 1 Spring 2009 8:00 PM – 9:00 PM

Instructions

- 1. Work each problem in the space provided.
- 2. Confine your work to the front side of the pages only.
- 3. Additional paper will be provided upon request.
- 4. Each problem is of equal value.
- 5. To obtain maximum credit for a problem, you must present your solution clearly. Accordingly:
 - a. Identify coordinate systems
 - b. Sketch free body diagrams
 - c. State units explicitly
 - d. Clarify your approach to the problem including assumptions
 - e. Clearly mark final answers with boxes
- 6. If your solution cannot be followed, it will be assumed that it is in error.

		\
(Prob. 1	
	Prob. 2	
	Prob. 3	
	Total	

Name: _____(Print) (Last) (First)

Some useful formulas

$$\varepsilon_x = \frac{1}{E} \left[\sigma_x - v \left(\sigma_y + \sigma_z \right) \right] + \alpha \Delta T$$

$$\varepsilon_y = \frac{1}{E} \left[\sigma_y - v (\sigma_x + \sigma_z) \right] + \alpha \Delta T$$

$$\varepsilon_z = \frac{1}{E} \left[\sigma_z - v \left(\sigma_x + \sigma_y \right) \right] + \alpha \Delta T$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy} \quad \gamma_{xz} = \frac{1}{G} \tau_{xz} \quad \gamma_{yz} = \frac{1}{G} \tau_{yz}$$

$$FS = \frac{Failure (ultimate) Stress}{Allowable Stress}$$

$$\tau = Gr \frac{\phi}{L}$$

$$\tau = \frac{Tr}{I_p}$$

$$\phi = \frac{TL}{GI_p}$$

$$I_{p_Circular_Cross_Section} = \frac{\pi d^4}{32}$$

$$I_{p_Hollow_Circular_Cross_Section} = \frac{\pi (d_o^4 - d_i^4)}{32}$$

$$e = \frac{FL}{EA} + L\alpha\Delta T$$

$$e = u\cos(\theta) + v\sin(\theta)$$

Name:		
(Print)	(Last)	(First)

PROBLEM #1 (30 points)

Two forces are applied to the bracket BCD as shown in the figure. The pin at C is to be made of steel having an ultimate shearing stress of 350MPa. Determine the diameter of the pin C for which the factor of safety with respect to shear is 3.3.

Name:		
(Print)	(Last)	(First)

Name:		
(Print)	(Last)	(First)

Name: _		
(Print)	(Last)	(First)

PROBLEM #2 (35 points)

The 1/2in. diameter rod CE and the 3/4in. diameter rod DF are attached to the rigid bar ABCD. The rods are made of aluminum (E= $10.6\ 10^6$ psi). Determine the force on each rod for the following loading condition.

6

Cross section area of member CE: $A_{CE} = 0.196 \text{ in}^2$ Cross section area of member DF: $A_{DF} = 0.442 \text{ in}^2$

Name:		
(Print)	(Last)	(First)

Name:		
(Print)	(Last)	(First)

Name:		
(Print)	(Last)	(First)

PROBLEM #3 (35 points)

The compound shaft shown in the figure consists of aluminum segment (1) and steel segment (2). Aluminum segment (1) is a solid bar with diameter $D_1 = 100 \text{ mm}$ and a shear modulus $G_a = 30 \text{ GPa}$. Steel segment (2) is a tube with an outside Diameter $D_2 = 60 \text{ mm}$, a wall thickness $t_2 = 5 \text{mm}$ and a shear modulus $G_s = 80 \text{ GPa}$. The compound shaft is subjected to torques applied at B and C, as shown in the figure.

a. Determine the rotation angle at B and C with respect to the support at A.

Name:		
(Print)	(Last)	(First)

Name:		
(Print)	(Last)	(First)