\qquad , (Last) (First)

ME 323 MIDTERM \# 1: SOLUTION

FALL SEMESTER 2011

Time allowed: 1hour

Instructions

1. Begin each problem in the space provided on the examination sheets. If additional space is required, use the yellow paper provided. Work on one side of each sheet only, with only one problem on a sheet.
2. Each problem is of equal value.
3. To obtain maximum credit for a problem, you must present your solution clearly. Accordingly:
a. Identify coordinate systems
b. Sketch free body diagrams
c. State units explicitly
d. Clarify your approach to the problem including assumptions
4. If your solution cannot be followed, it will be assumed that it is in error.
5. When handing in the test, make sure that ALL SHEETS are in the correct sequential order. Remove the staple and restaple, if necessary.

Prob. 1 \qquad

Prob. 2 \qquad

Prob. 3 \qquad

Total \qquad
\qquad _,
(Last)
(First)
\qquad
\qquad
(Circle one)

Equations

$\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right]+\alpha \Delta T$
$\varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]+\alpha \Delta T$
$\gamma_{x y}=\frac{1}{G} \tau_{x y} \quad \gamma_{x z}=\frac{1}{G} \tau_{x z} \quad \gamma_{y z}=\frac{1}{G} \tau_{y z}$
$\gamma=\rho \frac{d \phi}{d x}$
$\tau=G \rho \frac{d \phi}{d x}$
$T=G \frac{d \phi}{d x} \int_{\text {crosssection }} \rho^{2} d A$
$T=G I_{p} \frac{d \phi}{d x}$
$\tau=\frac{T r}{I_{p}}$
$\varphi=\frac{T L}{G I_{p}}$
$I_{p_{-} \text {Circular_Cross_Section }}=\frac{\pi d^{4}}{32}$
$I_{p_{-} H o l l o w_{-} \text {Circullar_Cross_Section }}=\frac{\pi\left(d_{o}{ }^{4}-d_{i}{ }^{4}\right)}{32}$
$\varepsilon=\frac{L_{f}-L_{i}}{L_{i}}$
$e=\frac{F L}{E A}+L \alpha \Delta T$
$F=\frac{E A}{L}(e-L \alpha \Delta T)$
$F S=\frac{\text { Failure Stress }}{\text { Allowable Stress }}, \frac{\text { Yield Strength }}{\text { State of Stress }}$
$e=u \cos (\theta)+v \sin (\theta)$
\qquad , \qquad

Problem 1

In the structure shown below the Rod BD is made of aluminum ($\sigma_{Y}=60 \times 10^{3} \mathrm{ksi}$) with a cross-sectional area $A_{\mathrm{BD}}=3 \mathrm{in}^{2}$. The pin at \mathbf{A} is made of brass ($\tau_{Y}=15 \times 10^{3} \mathrm{ksi}$), has a diameter $d_{\text {pin }}=0.25$ in and holds the structure in a single shear joint.

Find the maximum force $\boldsymbol{P}_{\text {max }}$ that can be applied at point \mathbf{C} given that a Factor of Safety of 2.0 is required for both rod BD and pin \mathbf{A}.

Assume that bar $\mathbf{A B C}$ is rigid and that the diameter of pins \mathbf{B} and \mathbf{C} are large enough that they do not need to be considered. Only consider rod BD and the pin \mathbf{A} in your calculation to find $\boldsymbol{P}_{\text {max }}$.

\qquad , \qquad

Static equilibrium analysis to relate internal forces to P

Considering bar BD:

$\sigma_{\text {allow }}=\frac{\sigma_{\text {failure }}}{F S}=\frac{60 \times 10^{3} \mathrm{ksi}}{2}=30 \times 10^{3} \mathrm{ksi}$
$F_{\text {allow }}=\sigma_{\text {allow }} A_{B D}=\left(30 \times 10^{3} \mathrm{ksi}\right)\left(3 \mathrm{in}^{2}\right)=90 \times 10^{3} \mathrm{kips}$
From static equilibrium analysis, $F_{B D}=0$, which means that $F_{B D}$ is independent of P and will never exceed $F_{\text {allow }}$ Fallow for any value of P.

Considering Pin A:

\qquad , \qquad
(First)
$\tau_{\text {allow }}=\frac{\tau_{\text {failure }}}{F S}=\frac{15 \times 10^{3} \mathrm{ksi}}{2}=7.5 \times 10^{3} \mathrm{ksi}$
$V_{\text {allow }}=\tau_{\text {allow }} A_{B D}=\left(7.5 \times 10^{3} \mathrm{ksi}\right)\left(\frac{\pi}{4} 0.25^{2} \mathrm{in}^{2}\right)=386.15 \mathrm{kips}$
Resultant force on pin: $F_{A}=\sqrt{\left(A_{x}\right)^{2}+\left(A_{y}\right)^{2}}$
Since this is a single shear pin, $V_{p i n}=F_{A}$
Therefore, the maximum shear force on the pin is, $V_{\text {allow, pin }}=386.15 \mathrm{kips}$
$V_{\text {allow, pin }}=386.15$ kips $=\sqrt{\left(-\frac{3}{5} P_{\max }\right)^{2}+\left(\frac{4}{5} P_{\max }\right)^{2}}=P_{\max }$
$\therefore P_{\max }=386.15$ kips
\qquad , \qquad Instructor: Susilo Koslowski Raman (Print)
(First)

Problem 2

A mechanism for a thermal switch is shown below. The mechanism consists of two elastic bars of length \mathbf{L}, elastic modulus \mathbf{E}, coefficient of thermal expansion $\boldsymbol{\alpha}$, cross section area $\mathbf{A}_{\text {bar }}$. The mechanism is pinned to a rigid wall at \mathbf{B} and \mathbf{D} and at \mathbf{C} the mechanism is pinned to a rigid roller. Both the bars are uniformly heated or cooled by the surrounding air temperature. Gravity is not to be considered in the problem.

Assume a starting condition when the temperature is at \mathbf{T}_{c} and the gap is just closed, and the roller is just touching the wall (as shown),
(a) Let the temperature be increased to a final temperature T_{f} so that $T_{f}-T_{c}>0$ so the roller presses firmly against the wall. Using the method of sections draw a free body diagram. What additional equations do you need to solve for the internal axial forces? Derive an expression for the axial normal stress $\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}$ in the two rods in terms of $\mathbf{\alpha}, \mathbf{L}, \mathbf{E}, \mathbf{A}_{b a r},\left(\mathbf{T}_{f}-\mathbf{T}_{\mathrm{c}}\right)$.
(b) Next let the temperature of the bars be decreased to a final temperature T_{f} so that $\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{c}}<\mathbf{0}$ and a gap opens up between the roller and the rigid wall. Using the method of sections draw a free body diagram and find the internal axial forces in the two bars. What is the axial normal stress σ_{1}, σ_{2} in the two rods?

\qquad ,

Problem 2
(a) FBD w/ sections

Note: $\sin c e$ all Joints are pin joints, this is a truss with no shear price or bending moment

resultants

$$
\begin{equation*}
+\uparrow \sum F_{y}=0 \Rightarrow+F_{2} \sin 30^{\circ}-F_{1} \sin 30^{\circ}=0 \Rightarrow 0^{\circ} \quad F_{1}=F_{2} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\pm \sum F_{x}=0 & \Rightarrow-F_{1} \cos 30^{\circ}-F_{2} \cos 30^{\circ}+C_{x}=0 \\
& \Rightarrow C_{x}-F_{1} \frac{\sqrt{3}}{2}-F_{2} \frac{\sqrt{3}}{2}=0
\end{aligned}
$$

Note: There was no need to assume symmetry to prove this

We have 2 egns (1) \& (2) but 3 unknowns $C_{x}, F_{1} \& F_{2}$ By combining (1) (2), we have $F_{1}=F_{2}=F$.

$$
C_{x}-\sqrt{3} F=0 \text { (3) i.e } 1 \text { egn \& } 2 \text { unknowns } C_{x} \& F
$$

$$
C_{x} \& F
$$

So we need a computability condition!
Note: we should not assume $e_{1}=o_{2}=0$; instead we need to use the given statement that $u_{c}=0$

$$
\begin{aligned}
& e_{1}=y_{c} \cos \theta_{1}+v_{c} \sin \theta_{1}=0.5 v_{c} \\
& e_{2}=4 c_{c} \cos \theta_{2}+v_{c} \sin \theta_{2}=-0.5 v_{c}
\end{aligned}
$$

Combining the two, $e_{1}+e_{2}=0$! (4)
But $e_{1}=\frac{F_{1} L}{E_{A}}+\alpha L \Delta T \& e_{2}=\frac{F_{2} L}{E A}+\alpha L \Delta T$
and since $F_{1}=F_{2}$ (see egn(1)) $\therefore e_{1}=e_{2}+\uparrow \sum F_{y}=0 \Rightarrow F_{2} \sin 30$ $=F_{1} \sin 30$
From (4) (5), we have $e_{1}=e_{2}=0$

$$
\therefore \sigma_{1}=\frac{F_{1}}{A A}=-E \alpha \Delta T=\sigma_{2}
$$

\qquad , \qquad

Problem 3

The shaft $\mathbf{A C}$ is subjected to torsional loads at sections \mathbf{B} and \mathbf{C}. The diameters are $\mathrm{d}_{1}=50 \mathrm{~mm}$ and $\mathrm{d}_{2}=20 \mathrm{~mm}$.
(a) If the twist angle at point \mathbf{C} is $\phi_{c}=\mathbf{0 . 0 6 r a d}$ determine the shear modulus (\mathbf{G}) of the material of the shaft.
(b) Determine the magnitude of the maximum shear stress in the shaft and indicate the location of maximum shear stress along the shaft, and location on the cross section.

\qquad , (Print) (Circle one)

$$
\begin{aligned}
& \frac{T_{A B} L_{A B}}{G_{P}}+\frac{T_{B C} L_{B C}}{6 I_{e 2}}=0.06 \\
& T_{A B}=-300 \mathrm{~N} \cdot \mathrm{~m} \\
& T_{B C}=100 \mathrm{~N} \cdot \mathrm{~m} \\
& I_{P_{1}}=\frac{\pi d^{4}}{32}=6110^{-7} \mathrm{~m}^{4} \\
& I_{P 2}=\frac{\pi d_{2}^{4}}{32}=1.610^{-8} \\
& G=17 G P_{a}
\end{aligned}
$$

b) Max between Band C, outer radius.

