ME 323 Review

Internal resultants
What are they?

- Consider a structure at equilibrium under the action of external forces (red).

- Make a virtual section at any Iocatlon within the body, say OO’, separate the two parts
of the body.

- Ask the question what internal forces/moments (green) does one part apply to the
other to keep the whole structure together in equilibrium?
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Internal resultants at a section in the body are all the resultant forces and moments that
the remaining part of the body applies to given part in order to keep the whole body
together. They can be classified as: v

(a) Internal axial force resultant (F)

(b) Internal shear force resultant (V)

(c) Internal bending moment (M)

(d) Internal torque (T) (not shown above)
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3D stress and Strain and Hooke’s law

* Type of connection Reaction . . Typeofconnecton =~ .  Reaction

Cable : Oneiunknp\yn:.l-" Two.unknowns. F,, F, . .
| EFERE . . SR Fx (5 W
Roller . One unknown: F

Smoothsupport . Oneunknown: F ‘Fixed support - Three unknowns: £, F,, M

Figure: 01-01-02T
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Hooke’s law in three dimensions with thermal effects
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where E and v are the Young’s modulus and Poisson’s ratio respectlvely, [zlis the
coefficient of thermal expansion. :

G is the shear modulus of the material which can be shown (Sectlon 2.11 of Craig’s
baok) to be related to E and v as follows
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Factor of safet

An engineer must ensure that the designed structure can withstand the expected loads
without yielding or failing. However both the material properties and expected loads are
uncertain. To allow for this uncertainty, structures and machines must be designed with

a built in factor of safety

Failureload 5
Max.allowable load

Factor of safety(F.S)=

or
Failure or yield stress
Max.allowable stress

Factor of safety (F.S)= >1

We will deal with two kinds of problems:

1. Evaluation of a given structure (what is the max. allowable load on a structure or
machine? What is the built in FS in the structure)

2. Design materials/dimensions of components with built in FS.
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Axial deformation

AN

SOONNNNNN

If cross-section made of different materials with E,, A,, i=1..N, then

F(x)= -z%:-(ElA1 +E, 4, +....)

If uniform material in the cross-section then

: du du
F(x)= E4ZZ i O
(%) w7 EA F(x)

To find displacements u(x) given F(x), one simply needs to integrate

u(xé)—u(xl) =—E1Z | F(x)dx = e (elongation)

Furthermore, if F(x) is constant between x, and x, then this simplifies more

) () = T2 =) )

= e (elongation)

v



ME 323 Review




ME 323 Review

->

<

~ Final
position

e=uc cos(0) + vc sin(0)
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Torsion
(5.0)=pL
hi=P dx (Geometry of deformation, Hooke's law)
=Gy
T(x)= j P G(p%j dA = %j Gpdd (Torque-twist equation)
A A 3

Simplifications
e If the rod is made of a uniform material over the cross section (G is constant over
the section) then the torque-twist equation simplifies to

T(x) =G.d—¢j "dA=GI, 4

dx Pdx

e Additionally, if BOTH the internal resultant torque T(x)=T is constant, AND if G is
constant over the cross section, then between x=x1 and x=x2, x2> x1, then by :
integrating the torque-twist equation above, we get

)~ gn) =28 22

GI
-~ o Finally we derived the all important torsion formula:

(Simplified torque-Mist equation)

p p

1

2q(%0) = pl : ’ (Torsion formula)
? A ; ’
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Problem solving strategy (statically determinate problems)

1.

2.

3.

Calculate the intemal torque resultants along the length of the beam.

To calculate the twist angles, see if the simplified torque twist relation can be
applied, if not use the general torque twist relation to work out twist angles along
the length of the rod.

Calculate stresses using the torsion formula.

Statically indeterminate problems in torsion

Consider a straight beam with external torques applied to it at various points. In the
statically determinate problems we have studied in the last two classes, the internal
torque resultants are easily calculated by making sections and applying static equilibrium
equations. In many problems, however, it is impossible to determine the internal torque
resultants using sections and static equilibrium equations alone. Such problems are
statically indeterminate, and feature more unknown internal torques than the number of
the static moment balance equations.

General strategy for solving statically indeterminate torsion problems

1.

Make sections and write out all the static moment balance equations for the
internal resultant torques.

Write out the torque-twist relation (usually the STTE) for each part of the beam.
Look at the geometry of deformation and figure out the compatibility eqUations.

Substitute (2) in (3) and solve with (1) to yield the internal torques in each section
of the beam.

Finally use the torsion formula to calculate the maximum stress in each part.
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Shear force bending moment diagrams

How to calculate shear force (V-M) diagrams using equilibrium relationships

12
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General method for V-M diagrams: ‘
Step 1: Calclate all support etins fro the FBD of the entire structure.
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Stresses in beams

Internal bending moment leads to flexural stresses on the cross section

-M(x)y
I

zz

) = ~ The Flexure Formula

But internal shear resultant V(x) Ie‘ads to a shear stress distribution on the cross section
i V(x)00) _
I, t(») The Shear-stress Formula

) =4'y)y'

Ty (%Y=

neutral
\aXis

Assumptions:
1. Ifload is applied in the Y direction, shear stress 7, varies on the cross section in the

Y direction and remains constant in the Z direction.
2. Other shear stresses z_ etc. are negligible.

3. Distribution of flexural stress is not affected by the presence of shear stress B

14
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The 2" area moment about the z axis

s _" y*dA=1_, the 2d area moment of the cross section about the Z axis, measured
4 ) :

relative to the neutral (centroidal) axis.
e For a rectangular cross section

_ 2
I, =[ydd
A
z=+b/2 py=+h/2
= ydy dz
z=—b/2 Jy=—h/2
- +h/2
z=+b/2 y3 h3 z=+b/2
= _— 7 = — .
z==b/2 z=—b/2
i 3 —h/2 12
;b
zZ - 12
e For an annular cross section of outer diameter do, and inner diameter of di
n(d,}t-d}) |
=

e For a circular cross section of outer diameter do

_7d}
“ 64 ,
e For more complicated shapes, one needs to use the parallel axis theorem.

L. =I_+A(d)>
zz: axis passing through centroid
z'7' is axis parallel to zz but displaced by an amount 'd'
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Stress transformation and the Mohr’s circle

Stress transformation equations

e g ‘
o (6)=2= . %y O - %) c0s(20) + 1, sin(20)

(=)
17,(0)= ———zism(z_ﬁ) +7,,€05(26)

6=0 is the physical X axis. The stress transformation equatlons tell us
how (onn, 7) change as 6 changes from 0.
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O avg™(Cxc+oyy)/2

,\\ X

> (O' XX Txy)
vT SxOyy)/2 ™,
0=0

Where does the state of stress at =0 X = (0,7, lie on the Mohr’s circle?
Where does the state of stress at §=90" Y = (0,,,7,,) lie on the Mohr’s circle?
What angle is swept out in the Mohr’s circle?

Principal stresses and directions

Oavg

> Oy, =0gn + R found on section oriented at &, wrt X axis
‘,_ (—Tmax,_ O'avg)

Oy, =0 — R found on section oriented at €,,wrt X axis

| The two principal directions are physically 90° apart

Maximum shear stresses and directions
Tuex =R found on section oriented at 6, wrt X axis

T =—R found on section oriented at &,,wrt X axis

mi;

The two directions for max/min shear are physically 90° apart

The direction for maximum / min shear

X isat45° toa principai direction

(Tmax, O'avg)
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Triaxial stress, principal directions, and absolute maximum shear stress
For a general three dimensional state of
stress, it can be shown that: there are three y
principal stresses, and the p2 i
corresponding principal planes are v :
mutually perpendicular. There are no :
shear stresses on the principal planes and '
the three principal stresses are labeled in
the order- maximum, intermediate, and
minimum o
0,=0,,,0,=0,,,0;, =0,,., 0,20,20,
Because all the faces are free of shear _-" 03
stress, this stress element is said to be in a .
state of triaxial stress.

02

Even for a plane stress situation, we need to

determine the absolute maximum shear
stress, the largest magnitude shear stress
acting in any direction on any plane passing
through that point. To understand this better let
us assume that we know all three principal

directions and principal stresses
0, =040, =0,,0, =0, 0,20, 20;
Clearly
_0,70, _0,-0; _0,-03
(7max)pl—p2 - (Tmax)pZ——p3 - (Tmax)p3—pl -
2 2 2
Therefore
O, -0, .
(Tmax )abs = 2 -

and this shear stress acts on a plane or cut section whose normal bisects the

corresponding principal directions.
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Pressure vessels and combined loading

A
t’ 2
pr
O-sphere _2_{

19



ME 323 Review

Beam bending (deflection curve)

(ERP")'=V(x) Shear Deflection Equation
(ED")"=p(x) Load-Deflection Equation

To solve for the deflection curve, we will use the following method:
2"d order integration method
» Calculate the Shear-Force bending moment diagram, and write down expressions
for M(x).
e Integrate the moment-curvature equation (2), with appropriate boundary and
continuity equations to get v(x), the deflection curve.

For statically indeterminate problems, find the internal bending moment in terms of
unknown support reactions. In the final deflection equation you will have additional
boundary conditions since the problem is indeterminate. All together you will have as
many equations as unknowns.

Beam buckling

7’ El n’E
” =D O-cr s
N (L, /)
where Le is the effective length of the column

Fixed-free Fixed-fixed Fi ixéd-pinned
L.=2L : L.=0.5L L.=0.7L
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Energy methods
5 . L
Axial b2 _L EALd_qux
29 EA 2y \dx
L 2 L 2
Torsion gt [ dx:lIGI (ﬁj de
23,66, - 23T &
L 2 L 2
Bending-flexure Uo:l Max 1 J‘ EI fi_”z’ e
2y EI 2y \dx
2
Bending-shear j (LY dx J‘Q (x, )
£(x,y)

Work Energy principle for calculating deflections

If the stresses in the body do not exceed the elastic limit, all of the work done on a body

by external forces is stored in the body as elastic strain energy.

W, =U

This idea can be used to calculate the deflections of beams in a very elegant and fast
manner. However the method is restricted to single loads, and does not quite work for

multiple loads.
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. Castigliano’s 2 theorem for statically determinate problems

If several loads Pii=1..N and external moment M;,i=1..Q act on a body, then the
deflection A, in the direction of the applied load can simply be calculated as follows:

-~ OU(R,B,,....Py, M}, M,,...M,)
1 ] aR
where the total potential (strain) energy is written in terms of the loads Pi and M.
Furthermore the local rotation 6, in the direction of the applied moment can simply be

calculated as follows:

5" OU(B,B,y....Pys My, M, ... M,)
o oM,

i

Castigliano’s 2" theorem for statically indeterminate problems

Suppose that in addition to the Pii=1..N and external moments M;,i=1..Q, that we have
S redundant forces or moments, Ri. Recall that one interpretation of the redundant
forces or moments is that they create some constraint — or prevent the motion of the
structure in some ways. Accordingly, we will write that the deflections due to the
redundant forces should be zero. We get

_ BB By R RppewiiB)
R,

5 o B By W Bylbie]

’ oP

1

0

So now we have N+S equations for as many variables. Typically the first equation
above can be used to calculate the redundant forces.
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