
ME323: Mechanics of Materials 
Final Exam Study Guide  1 
 

MES  1 
 

  See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. 
Stress transformation 

 
In summary, the stress transformation equations are:  
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Important:  
 
Principal Plane: The maximum and minimum normal stresses are called the “principal stresses”.  
The orientation angle of this plane, θp, is: 

( ) ( )
tan 2

2

xy
p

x y

τ
θ

σ σ
=
⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

*See next page on how to use this eqn 

The stresses in this plane are: 
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Therefore, the stress element in the principal (p1-p2 axes) plane is: 
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The orientation angle of this plane, θs, is: 

( )

( )
2

tan 2

x y

s
xy

σ σ

θ
τ

⎛ ⎞− −
⎜ ⎟
⎜ ⎟
⎝ ⎠=  

*See next page on how to use this eqn 

The stresses in this plane are: 
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Therefore, the stress element in the principal (s1-s2 axes) plane is: 

 
 
Important points: 

1.  θp1  is measured CCW from x to p1  
2. θs1  is measured CCW from x to s1 
3. positive shear stress and positive normal stress are: 

 

4. When calculating the angle from ( ) ( )
tan 2
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, we can get two angles, but we don’t know 

which is θp1  which is θp2. To find out, here is what we can do:  
 Calculate 'xσ  using one of the angles. If ' 1xσ σ= , then that angle is θp1, if ' 2xσ σ= , then that angle 
is θp2. (See example 9.3 on page 448 of textbook.)  
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Mohr’s Circle 
Mohr’s circle is a graphical representation of the stress transformation equations.  

 
1. Draw the σ and τ axes as follows: positive σ to the right and positive τ down: 

 

2. Position the center of the circle at ; 0
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3. The radius of the circle is 
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4. The stress state in the x-y plane shown above are represented by a straight line connecting two points on 

the Mohr’s Circle: ( , )x xyX σ τ  and ( , )Y xyY σ τ−  
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How to use the Mohr’s Circle 

1. Stress transformation from x-y plane to x’-y’ plane in a Mohr’s Circle: 

 
    θ CCW rotation (x to x’) in stress element = 2θ CCW rotation in Mohr’s Circle (X to X’) 

2. Plane of principal stress 

 
3. Plane of maximum in-plane shear stress 
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Failure Theories 
Understand how to use failure theories 

 e.g. finding minimum cross sectional area, finding maximum weight that a structure can support, etc.  
using failure theories with factor of safety 

 
Theories of failure for brittle materials,  

1.  Maximum Normal Stress Theory  
This failure theory assumes that the ultimate stress of the material in tension and compression are 
equal.  

 Failure occurs when the maximum normal stress (principal stress) in the material reaches a value that 
is equal to the ultimate normal stress.  

1 uσ σ=  

2 uσ σ=  

2. Mohr’s Failure Criterion 
This failure theory is for brittle materials whose ultimate strength in tension and compression are 
different.  

In tension, max, ,tension U tensionσ σ=  

In compression, max, ,compression U compressionσ σ=  
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Theories of failure for ductile materials,  

1. Maximum Shear Stress Theory (Tresca yield criterion) 

 Failure occurs when the absolute maximum shear stress in the material is equal to the shear stress that 
causes the material to yield in uniaxial tension test.  

max 2
Y

abs
στ =  

Case I: the 2-D principal stresses are both positive 

 
Case II: the 2-D principal stresses are both negative 

 
Case III: the 2-D principal stresses have opposite signs 

 
Therefore, in terms of the principal stresses,  
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2. Maximum Distortion Energy Theory 
This failure theory uses the maximum distortion energy (the energy required to change the shape of the 
material without changing the volume) to characterize failure.  
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Beam Deflection 
 
Beam deflection: 2nd order integration method  
 
1. Determine the internal bending moment equation for each continuous segment 
   a. Find the reaction forces 
 b. Derive the internal bending moment through equilibrium method  

    Note: It is also possible to use the graphical method. However, it is important to remember that the 
actual equation of M must be derived.  

 
2.  Moment-Deflection equation for each continuous segmentt 

 Integrate 
2

2

u M
x EI
∂
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∂

 to find the deflection equation 

 
3.  Boundary Conditions & Continuity Equations  
 Use the boundary conditions and continuity equations to find the integration constants in the deflection 
equations found in step 2.  
 
Boundary Conditions: 
Roller 
 
 

Zero deflection 
0u =  

 

No deflection slope restriction 

Pin 
 
 

Zero deflection 
0u =  

No deflection slope restriction 

Fixed end 
 

Zero deflection 
0u =  

Zero deflection slope 

0du
dx

=  

 
Continuity Equations: 

For each continuous section, we have different internal bending moment equation. Consequently, the 
deflection equations are different. To ensure that the different equations result in a continuous deflection shape, 
we will enforce continuity equations. At each discontinuity point,  

1 2u u=  

1 2

1 2

du du
dx dx

=  

 
 

Statically determinate vs. statically indeterminate 
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From Table 12-2 of textbook: 

 
 
Discontinuity function 
 
1. Calculate support reactions 
2. Use the discontinuity functions in the table above to express M(x) as a function of x.  
     Note: Since we are expressing the equation using discontinuity function, only 1 equation is needed for any 

beam. 

3. Use the moment-displacement equation 
2

2

d uEI M
dx

=  and integrate to get u(x) 

4. Use boundary conditions to find integration constants (continuity not needed for this method) 
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Buckling 
Buckling can happen when the internal load > crP . 
For various types of support, the critical force equation for buckling becomes,  

 
2

2cr
e

EIP
L
π

=  ------------------------------------ in general 

where eL KL=  is the effective length of the column and K is listed in the table below,  
 
Pinned-Pinned ends:  K = 1 

 

Fixed-Fixed ends: K = 0.5 

Pinned-Fixed ends: K = 0.7 

 

Fixed-Free ends: K = 2 

 
Failure analysis: buckling vs. yielding (crushing) 
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Energy Methods 
Work-Energy in deformable material: 
 
Work done to deform an elastic material Total strain energy (stored energy) in structure

e iW U
=
=

 

 
Work done to deform an elastic material 
By a Force 1

2eW Fd=  F = Force applied at point P 
d = Deformation of point P in the direction of the force 

By a Moment 1
2eW Mθ=  M = Moment applied at point P 

θ  = Deformation angle/slope at point P in the direction 
of the moment 

 
Components of strain energy in the structure: 

By axial loading 
2

, 2i N
N LU

AE
=  N = internal normal force 

By torsion 
2

, 2i T
T LU

JG
=  T = internal torque 

Bending   
     By bending moment 2

, 2i M
L

MU dx
EI

= ∫  
M = internal bending moment 

     By transverse shear force 2

, 2
s
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L
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V = internal shear force 

sf  = form factor = 
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For a rectangular cross section, 6
5sf =  

 
 
Total strain energy of the structure: 
 

22 2 2

2 2 2 2
s

i
L L

f VN L T L MU dx dx
AE JG EI GA

= + + +∫ ∫  

Note: The contribution of strain energy from transverse shear force is negligible for long slender beams, 
therefore it can be neglected. 
 
Impact loading: use the equation 1 1 2 2eKE PE W KE PE+ + = +    
 For purely elastic deformation, strain energy is conserved. Therefore, strain energy can be included in 
potential energy.  
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Limitation of the Work-Energy principle: Only displacement in the direction of a single applied load can be 
computed.  
 
To get around this limitation, we will use a more powerful method:  

- Principle of Virtual Work (Ch. 14.5 in textbook) 

Principle of Virtual Work 
 
For trusses: 
To find a displacement at point P ( PΔ ), replace real loadings with a virtual load of magnitude 1 at point P, in 
the direction of the displacement.  

virtual real
P

i i ii

F F L nNL
AE AE

⎛ ⎞ ⎛ ⎞Δ = = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑  

where,  
i = truss i 

virtualF  = n = internal normal force of truss i for the case of virtual loading    
     realF  = N = internal normal force of truss i for the case of real loading      
 
 
 
For beams: 
To find a displacement at point P ( PΔ ), replace real loadings with a virtual load of magnitude 1 at point P, in 
the direction of the displacement.  

virtual real
P

L L

M M mMdx dx
EI EI

Δ = =∫ ∫  

where,  
virtualM  = m = internal bending moment of truss i for the case of virtual loading    

     realM  = M = internal bending moment of truss i for the case of real loading      
 
Note: If angle at point P is needed, apply a virtual point moment of magnitude 1 at point P.  
 
 
 
Strategy: 

1. Replace real loadings with a virtual load (or moment) of magnitude 1 at the point where displacement is 
to be computed (in the same direction as the displacement).  

2. Determine internal resultants for both virtual loading case and real loading case.  

3. Apply the equation,   P
i i

nNL
AE

⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

∑   for trusses 

P
L

mM dx
EI

Δ = ∫    for beams (transverse shear negligible) 


