ME 315
Final Exam
Friday, May 3, 2013

* This is a closed-book, closed-notes examination. There is a formula sheet
provided at the end of this exam.

* You must turn off all communications devices before starting this exam, and
leave them off for the entire exam.

* Please write legibly and show all work for receiving partial credit. Please show
your final answers in the boxes provided.

* State all assumptions.

* Please arrange all your sheets in the correct order. Make sure they are all
included.
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1. Consider unsteady heat conduction in a two-dimensional domain given below. The domain is
meshed with a square mesh with Ax = Ay = 1 cm. At time t = 0, the boundary conditions given
below are applied such that T, = T, = Tz = 300 K, and T; = Tg = 400 K. The initial
temperatures at nodes 4, 5 and 6 can be assumed to be 300 K. Also assume that there is a
uniform heat generation within the domain given by &=10°%/m’. You are asked to
determine how the temperatures of grid points 4, 5 and 6 change with time using an explicit

time stepping scheme. You are given the following material properties: p = 2000 kg/m’, k =
100 W/mK, ¢, =300 J/kgK.
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(a) Using the energy balance method and an explicit time-stepping scheme, develop analytical
expressions for T4, Ts and Te at time step t = At in terms of the neighbor temperatures,
material properties and mesh parameters. Show analytical expressions for the discrete

equations here.

T4 (AY) =

Ts (At) =

Te (At) =




(b) You are given the choice of two time steps, At = 0.1 s and At = 100 s. Which one would you
choose, and why?

At= seconds

Reason:

(c) Using the value of At you chose in part (b), determine the numerical values of the

temperatures T4, Ts and Te at t=At using the explicit scheme.

T, (At) = K
Ts (At) = K
Te (At) = K










2. A long uniform rod of 50-mm diameter with a thermal conductivity of £ = 15 W/mK is
heated internally by volumetric energy generation of &=20 kW/m’. The rod is positioned
coaxially within a larger circular tube of 60-mm diameter whose surface is maintained at
T, = 500 K. The annular region between the rod and the tube is evacuated, and their

surfaces are diffuse and gray. The emissivity of the rod is €; = 0.2 and that of the tube is €
=0.5.

(a) Derive an analytical expression relating the center temperature of the rod, T, the surface
temperature of the rod, T}, and the volumetric heat generation rate, .

(b) Determine the center and surface temperatures of the rod.

(c) Determine the net radiation energy per unit length leaving the surface of the rod, q;' (W/m).

ql' = W/m










3. A container of coffee is placed in a room of quiescent air at 7., = 300 K. A very thin
vertical flat plate radiation shield of 7; = 325 K with & = 0.5 is placed around the container
such that a vacuum exists between the thin wall of the container (¢, = 0.5) and the shield.
150 W/m® of power is supplied to the coffee so that it maintains a constant temperature.

Find (a) the temperature of the coffee, (b) the heat flux due to free convection on the outer
surface of the radiation shield, and (c) the temperature of the surroundings. The height of
the walls is 25 cm.

TS‘U,T'T
Air properties:
Pr=0.7
coffee
Ten v=17x10"° m%/s

a=24x10"° m%/s
k=0.027 W/mK

(a) T.= K

(b) q”conv = W/ 1’1’12

(©) Tsurr K
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4. A single hotdog of mass m = 30 g is cooked inside a convection oven. The hotdog is
represented as a cylinder with a diameter of 2 cm and length of 10 cm with an emissivity of &,
= 0.3 and a specific heat of ¢, = 2500 J/kgK. The convection oven is a cube with a side length
of 15 cm. The bottom wall of the oven has an emissivity of &, = 0.9 while the other five walls
are reradiating surfaces. At a given time, the hotdog has a temperature of 7, = 350 K and
increases at a rate of d7/dt = 0.25 K/s. Air flows around the hotdog at a temperature of 75, =
375 K and velocity of u =5 m/s. There is no convection heat transfer with the bottom wall or
the end caps of the hotdog.

Air properties:
Pr=0.7

p =0.94 kg/m’
u=5m/s w=218x107 Pas
k=0.031 W/mK

&p = 0.9

15 cm

(a) Sketch the radiation network of the system showing the resistances using symbol.
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(b) Find the heat transfer rate due to convection around the hotdog.

Jeonv = w

(c) Determine the temperature of the bottom surface. The view factor from the bottom surface to
the hotdog is Fp, = 0.07.

Tb= K
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5. (a) Answer the following questions with respect to internal flow in a circular tube under
constant surface heat flux and Rep= 20 conditions. The length of the tube, L = 10D, where D
is the diameter. On the first set of axes, sketch the variation of Nusselt number, Nu(x), along
the length of the tube for two values of Pr =1 and 10. On the second set of axes, sketch the
variation of the mean temperature, 7,,(x), along the length of the tube for Pr = 1 and 10.
Clearly label all the plots.

Hint: The thermal entry length can be calculated as (x./D)=0.05RepPr.

A A

(b) Find the convection coefficient 4 for a parallel-plates duct having the following
characteristics:

‘ q!/
* plate spacing 2H TR EE R
* a “uniform” velocity profile, i.e., u(y)=U : > ' A
* uniformly applied heat flux ¢" at the walls u(y)=U —> J Y VH
* a fully developed temperature profile, i.e., ___-;f ________________ A _I-LI_
q" 2 2 > \ 4
T(y)=——\y" -H")+T,
0)=3 K H (v )+7,

RELEEEEED
q

where T, is the wall temperature, ks is the fluid thermal conductivity, and the vertical
coordinate y is zero at the centerline. Hint: calculate the mean fluid temperature 7, by

utilizing its definition. The convection coefficient /4 can be related to heat flux ¢" and the

temperature difference (7, -7).

h:
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ME 315 Final Exam
BASIC EQUATION SHEET

Conservation Laws
Control Volume Energy Balance: £, -£ +E _ =E; E =mC dl/ ; E =qV

gen st P dt gen

Surface Energy Balance: £, -E =0

Conduction
Fourier’s Law:g4 =~ - 2L, Gooran = w2 Geond = Deona
cond ,x X cond ,n an
Heat Flux Vector: ' =¢'i+¢' j+q k =k G,.or L+ vy
x y : ax dy 0z

Heat Diffusion Equation:

Rectangular Coordinates: 9 kﬂ L0 k£ L9 kﬂ +¢=pC T
ax\ odx) ady\ dy) az\ oz P oot

Cylindrical Coordinates: 1 9. w2 Li o IR PR +¢4=pC or
ror\ ar) r*og\ o¢ az\ oz 7ot

Spherical Coordinates:
in krZE +— .12 9 kaT I 9 ksmH—T +¢=pC ar
reor or )] r’sin’@dp\ d¢ ) r’sind a0 90 P ot

Thermal Resistance Concepts:

. . planewall olinder In( 7 /7 sphere (1/p 1/r
Conduction Remstance:Rt oy = i; R.., = M; R.. = (/ ) (/ )
o kA 27lk '
. . planewall 1 cylinder 1 sphere
Convection Resistance: R ... SR, = —— R, = —3—
! cony , 2ﬂrthOilv , 4ﬂr h
L. . planewall cylinder sphere
Radiation Resistance: R .. 1 SR, = ;; R., = +
’ h, dA ’ 2arlh,, 4zroh,,
Combined Convection and Radiation Surface: 1 __ ! + 1
chnv+md Rl,conv lzl,md
Contact Resistance: R, = 1
, contact contact
Thermal Energy Generation:
Plane wall:
T(x) ari, _x
x —_——
2k L2
Cylinder:
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Extended Surfaces:
cosh [m(L—x)] +(h/mk smh[ m (L~ )]

Convective Tip: aéx)= cosh(mL)“L(h/mk;Slnh( )
sinh (mL )+ (h/mk )cosh (mL

\_/\_/

hPkA )" 6,
= )8 * cosh (mL )+ (h/mk)sinh (mL
Adiabatic Tip: #(*) _ cosh[(L -] 4, = (hPk4,)" 6, tanh (mL)
g, cosh(mL) ‘
Prescribed Tip Temperature: g(x) (6./6, )sinh (mx) + sinh [m(L ~ x)]
g, sinh(mL)
h(mL)-(6,/6,)
ek, )2 6, & L/
T = ( ) b sinh(mL)
Infinitely Long Fin: 6(x) —e™ g, = (hPkA,)"” 6,
6[7
hP .
m2 =— 6b = ];) _Too 5 qﬁn = QCanv,ﬁnsmjface + QConv,tip’ QConv,tip = hAcHL

. . q L o—
Fin Effectiveness: &, = —2"—; ¢, = <"
4.6, R

t,cond - fin

) ) qﬁn adiabatic tanh (mL) A tanh (mLC )
Fin Efficiency: 7, = ; = s L=L+— M=
Y a6, mp Tk L,
qtotal NAﬁ” . 1 . 1
770 = =1- 1_77 in ) R cond-fin = 1 . R ,cond - finarra =
hATatalab A?,‘otal ( ’ ) =1 nﬁnhAﬁn t g nahAtatal

Two Dimensional Steady Conduction:
2D 1

Conduction Shape Factor: R, = =

Finite Difference Method

(uniform mesh, interior point, no gen., steady): T +T+T 0+, =4T,

i-1,j

Transient Conduction:

Lumped System Analysis: Bj = Ry cona = Poom L ; ﬁ -1, = exp _t ; Fo =ﬁf
t—conv ksulid Hz T; Toc Tt Lc
6 ho L . prC .
—=eX —conv_¢ =exp|[-(Bi)(Fo)l> T = 2 -C R
61' pl: ( kVO/id )( Lz ) p[ ( )( )] t hconvAv rolid rcony
Analytical Solutions: g* z T-T. LI S =%t
6 T-T, L r L
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planewall

Plane Wall: g planfwal/ C exp(—é‘leo)cos(é‘lx* ); H: = ( exp( CZFO)
0 plan;)walll g sin (é‘l )
0, &
eylinder
LOl’lg Cylinder: g = C1 exp(—é‘leo),]O (é‘lr*); ﬁ: = Cl exp(—é‘leo);
oy

2 cylinder‘l _2 0* M

0, g

Sphere: g = exp( -&; Fo)mrl(m; 0, Sph=mC1 exp(—ngo);
sphere é‘lr*

gspz;ml_39; [Sin(é‘,)—é;, cos(é‘] )]

Qo é‘1

Semi-infinite Solid:

Constant Surface Temperature: T(xt)-7, erf _k(T.-T))
I-T 2\/7 Jmat
2
Constant Surface Heat Flux: 7'(x,7)-7; = —Zqo(at/ 7) exp| - —Merfc X
1 k 4at )k Wat
2
Convection: T(xt)-T, _erfe| — )| exp hx  hat erfe h\/a
T,-T 2Jat koK @ k

Finite Difference Method:
explicit

. e
Explicit Method: 7" = (1_4F0)T15+F0(TP +T7 +Tj+1+T,’;1)

i+l,j
.. implicit
Implicit Method:];fj’_ = (1+4F0)7;,P+1 Fo(]jf;; FTI AT TII;Hl)
2 2 2
. 1D 2D 3D
Stability Limits: A < ﬂ; A = (Ax) DAL < (Ax)
explicit 2a explicit 4a explicit 6a

Convection
Newton’s Law of Cooling: ¢ =h  (T.-T.); q.,, = q.ond

Mass Transfer:  n, =1, (p,, ~ P )5 Qo =AM,

Average Heat Transfer Coefficient: /5 _ = f h,,, dA

conv conv
s Ag

— 1
Average Mass Transfer Coefficient: 7, = i f h,dA,
s AS
Dimensionless Parameters:
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_PVL,
u

VI,
v

Reynolds Number: Re,

9

Prandtl Number: Pr = Z; Schmidt Number: Sc = L; Lewis Number: Le = =

isothermal flat plate

Nu

X

turbulent

0.0296Re!°Pr'”;

flat plate

Flat Plate (Turbulent Average): C,

> turbulent

isothermal flat plate

Nu, 0.037Re, " Pr'”

flat plate

Flat Plate (Mixed Average):C, ,

turbulent

isothermal flat plate

turbulent Rel /5
X

a AB AB
h L
Nusselt Number: Ny = M, Sherwood Number: Sh = 2=
Sluid DAB
. o Y a0 ]
Boundary Layer Thickness: — = Pr"; — = Sc"; - =Le
61‘ 66‘ 66
Heat-Mass Analogy:& _br ; I = k — = pCpLel'”
Sh Sc" h, D,glLe
External Flow:
Flat Plate
. Slat plate Sx flat plate
Flat Plate (Laminar Local): 0 = ——=; C = 0.664Re'?;
laminar Rex Jox laminar *
isothermal flat plate
Nu, = 0.332Re*Pr'”
. _ flat plate 12 isothermal flat plate
Flat Plate (Laminar Average): C o= 1.328Re; '~ Nu, = 0.664Re!2Pr'";
__ flat plate
Sh, = 0.664Re1/2Sc”3
flat plate 037 flat plate
Flat Plate (Turbulent Local):§ = s z 0.0592Re'"”;

9
X
/s turbulent

= 0.074Re;";

= 0.074Re;'” —1742Re;';
mixed

Nu, = (0.037Re}” -871) P/
Cylinder:
. cylinder O 62Rel/2P}"1/3 Re 5/8 4/5
Cylinder: vy, - = 0.3+ ————=> |1+ D for ReDPr>0.2;
[1 +(0.4/pPr)" ] 282000

Sphere:

22



Nu, =2+(0.4Re})’+0.06Re},* | Pr* (ﬂ)

Internal Flow:

f pu(r,x)dA, )
. circular o
Mean Velocity:,, -4 5, = 2 f u(r,x)rdr
m IOAC m ’;2 |
circular
Reynolds Number: Re, = U, Dy . D, = 4Af; Re, = u,D
" v P v

Turbulent: Re,, = 2,300

. X laminar . urbulen,
Hydrodynamic Entrance Lengths: (xfd ”’ydg’y”“'m ) = 0.05Re,; 60> (W)t =10

turbulent

0.05Re, Pr 6o>(xﬁ,zlh)mw) &

inar

Thermal Entrance Lengths: ( X it thermal ) i
D

fpuC[)TdAC . I I,
Mean (Bulk) Temperature: T =4 T, w2 ~ (uT (r,x)rdr
me u,r

Constant Heat Flux: T, (x) =T .+ Mx =T, + q.P X5 Gy = q; [ = q; (PL)

m,

m Cp m Cp
Constant Surface Temperature: L-T _ exp _ﬁa S AT, = AT, - AT,
I, -T,, mC, [ AL
AT,
AT T -T PL —|. T :
o= =l = eXp _fhc(mv 4 qconv = hcanvAxAT}‘MTD = me (Tm,o - Tm,i)
AT, T,-T,, "

Circular Pipe

Fanning Friction Factor :
flaminar 64 . fmrbi]m&ll/f for Rep< 2x10%; ftwb:m 0.184 £op Rep >2x10*

Re, Re, Re)’

. . laminar laminar

Laminar Fully-developed Region: Nu, = 4.365 Nu, = 3.66
q =constant " =constant
Laminar Entrance Region: NT,DTECTW 3.66 + 0'0668(D/ L)REDPF e
1+0.04[(D/L)Re,Pr]
__ T ,=constant Re. P 173 0.14 . ”
Nu, = 186)=2") (£ (Bothapplicable to g = constant)
LD | \u
. turbulent fluid cooling
Turbulent Fully-Developed Region: Nu, = 0.023Re}°Pr"; n = 03
fluid heating . »

n = 0.4 (Applicable to g, = constant and 7, = constant)
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Free Convection:

1/4
Boundary Layer Parameters: 7 = X( or, ) s U= 2—V(er )1/2 f (77)

_ 3
=—gﬁ(7} sz)x » Ra =GrPr=

Gr,
v va

isothermal vertical plate O 387 R al/ 6
N L

Vertical Flat Plate: Nu, - 0.825 + .
[1+(0.492/Pr) ]

/27

isothermal horizontal plate

Horizontal Flat Plate: 7, = 4 /P; Nu . = = O.54Raz 4

upper hot | lower cold

isothermal horizontal plate isothermal horizontal plate

1/3« 1/4
Nu, = =0.15Ra, " Nu, = =0.27Ra,
upper hot | lower cold ¢ ¢ lowerhot/upper cold ¢

isothermal horizontal cylinder

Horizontal Cylinder: Ny, = CRa),

isothermal sphere 0 5 89 R a 1/4
. D

Sphere:NT,D - 24 —
[1+(0.469/Pr) ]

Boiling:

Basic Equation: g, . =%, ...

AT, = by, A(T, - T,,,)

boiling
| nucleate

Nucleate Boiling: q =

boiling

cp,lAT;
Cyhy Pr’

1"sg

g(p,—/)v)]”2

1/4
nucleate T

qmax 2

s

boiling 24 fel%y

Gg(p;—pv)l

1/4

Ug(pl _IOV)
(pl +pv)2

g(pz _pv)hlng3
Vvkv (7: - 7—;at )

Minimum Heat Flux: 4’ = 0.09% P,

1/4

E D fim

k  boiling
v

Film Boiling: ;) =

cylinder sphere

hy=h,+08C, (T.-T,); C = 0.62; C = 0.67

sat

Condensation:
i ion: = = - 9 condensati
Basic Equatlon' 9 condensation = ha de ‘mAAT;I - hcondensationA(Zlat - 7; ) > Mcondensation = con;;matmn
/4

Film Condensation:
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laminar

Vertical Flat Plate: Nu, = hL - 0.943

kl film condensation

glo-p)h L]
Vlkl (Tvaz _7—;)
hy =h, +0.68C, (T, -T)

sat

Heat Exchangers:

AT v _AT q =UAAT,
1
AT,
Heat exchanger effectiveness: ¢ = 7 q
Qmax Cmin (T;u - ]Z*i )
UA

Number of transfer units; NTU = —

min

Radiation
Two Surface Interaction:

dA2,normal A cos 6

dw, | = . . s Q=1 (Acosﬁ )da)21

Emissive Power:
2 /2

fd¢f] (4,6,8)cosOsinfd0; E = fE dA

dg{ﬁtse emitter diffuse emitter

E(X) = al(A)E = al

e
Irradiation:
2 /2

fd¢f 1,.(2.6,¢)cosOsin6d@; G = fG dA

dlffuse il radwtlon diffuse irradiation
G (4) = al,(A:G = aI
Radiosity:
2w /2

fd¢f sesr (As0,8)cosOsinddO; J = fJ dA

di ﬁ%e emitter diffuse emitter

J(A) = al,,(A):J = Al

diffuse reflector ? diffuse reflector

Black Body Emission:

Black Body C . Black Body * Black Body
1

E/l,b(j'sT) = ’Eb(T) = fEM)(/LT)d/% = oT%

TECE .
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Black Body
E b = al b
Black Body

Wein’s displacement law: 3 7 = 2898umK

Radiative Properties:
1, (2,6,4,T).
ML, (AT)

2 /2

fd¢f 1,,(2,0,,T )cosOsin0d6

Emissivity: .

E,(A,T)dA feAEM(A,T)d/l
0

0 =
2r /t/2 o O_T4
[E,
0

€, = A N £ =
E”’ [db [ 1. (A,T)cosBsin0do E,,(4,T)d2
0 0
2 /2
do [ 1, sorsed \ A, 0,9 ) cosOsind 0
AbSOI‘pthlty aﬂ.H M a. = G/l,absorbed (/1) - ‘{ ¢‘!‘ ot ot 1( ) ,
A v F 2
fa (2.6 ¢) G (A) }d¢flm. (/1, 0,¢)cos9sin6’d€
0 0

a,G,(A)dA
a= Gabsorbed /G’ o= ‘{w

[G.(2)dA

0

2 Tl2
do (1, 2,6, Osinfdo
Reflectivity: p 1 s vepecrea (20 ¢) Gy () ) f ¢ f 2t refected (s 09 ) COSOsin ;
76 = /1,1()’9¢) PP = GA(A) =T an
fd¢f (A,6,¢)cosOsin0d6

0,G; (A>dl
p = Greﬂected /G’ p= ‘{w

[G.(2)dA

0

27 /2

d¢ 1 i transmitte A” 9’ ¢ COSHSinedH
TI‘aI’lSI’nISSIVIty TA. H I)“ i transmitted (ﬂ" 0’ ¢) ’ _ G/Ltransmitted (/1) _ _{ ‘{ Asit tted ( )

ﬂ, P T, = - 2 /2
] 1,,(4.6.9) G, (2) fd¢f 1,,(2,6,¢)cosbsin6d6
f 7,G, (A)d A ' 0
;T = Gtransmitted / G ;17 = 0007
[G.(2)dA
0
Semi-transparent Surface: a . p/l . T/l semi—trz:épurent 1’ o p it semi: —rra=nsparfnt

opaque opaque

Opaque Surface: ¢, +p, = 1; a+p = 1
Kirchhoff’s Law: €=,

Gray Surface: ¢, ;gf(/l); a, #f(/l);
Diffuse-Gray Surface: ¢ =«
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View Factor:E q, ; ff cosﬁcosﬁ, i dA F, q/ » ff cos@cosﬁ, dAdA,
]
Remprocny AF, = AF,
convex surface concave surface
Summation: EF“ _15F, = 05F = 0
~ v plane surface
. . AF,
Surface with multiple sub-surfaces: ,, _ Z o
(0.
DR
=1
. . Black Body
Radiative Exchange:y - 4 Fo(1*-1);
Diffuse-gray enclosure: , _ Ey=Ji ;  _ i Ji=J;
" (1-g)/4e, T A VAF,
Radiation Shields: J Sinele Sietd E,-E,,
’ (1‘51)+ 1 +(1‘531)+(1‘532)+ 1 (1-g)
Algl AIFiS A3€31 A3€32 ASP;Z A2€2

Net Radiation Balance:¢' , =J -G

large isothermal

Large isothermal surroundings: G =~ = jfaeeisothemal _
\ large isothermal 4 4
qrad = 80'(T T;urr ) hrad (T Tlurl )
2 2
hrad = EO-(T; +T;mr)(T +T;urr)

Useful Constants

o = Stefan-Boltzmann’s Constant = 5. 67x10®
m’K*

R, = Universal gas constant = 8,314 J/ kmol-K

Geometry
Cylinder: 4 = 27zr1; V = 'l

Sphere: 4 =4zr*; y = :;z'r3
Triangle: A= bh/2  b: base h: height
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