Problem 1 [25 points]

(a) [6 points] Two hot spheres initially at temperature $T_{i}=500^{\circ} \mathrm{C}$ are quenched by dropping into a liquid bath. The liquid bath is at a constant temperature $T_{\infty}=25^{\circ} \mathrm{C}$ and it provides uniform convective heat transfer coefficient $h=100 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$ around the entire surface of both spheres.

Sphere A: $D_{A}=10 \mathrm{~mm}, k_{A}=10 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$
Sphere B: $D_{B}=100 \mathrm{~mm}, k_{B}=1 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$
Which sphere has nearly uniform temperature from the surface to its center during cooling? Circle your answer below.

Sphere A
Sphere B
Briefly justify your answer in the box below.
\qquad

Problem 1 - continued

(b) [6 points] Use Energy Balance Method to numerically solve steady-state conduction in a 1D composite bar. Some nodal temperatures and properties are shown in the figure below. All nodes are evenly spaced. There is no contact resistance and no heat generation. Neglect radiation and convection.

(i) Derive the nodal equation at node T_{2}
(ii) Calculate the value of $\mathrm{T}_{2}\left({ }^{\circ} \mathrm{C}\right)$.
\qquad

Problem 1 - continued

(c) [7 points] Saturated steam condenses on the outer surface of a thin-walled pipe of 10 mm in diameter and 3 m in length, making the surface temperature of the pipe uniform at $94^{\circ} \mathrm{C}$. Water flows through the pipe at $0.1 \mathrm{~m} / \mathrm{s}$ and the temperature of water at the inlet is $17^{\circ} \mathrm{C}$.

What is the temperature $\left({ }^{\circ} \mathrm{C}\right)$ of the water at outlet? Evaluate the water properties at an assumed average temperature of $27^{\circ} \mathrm{C}$. Fully-developed flow can be assumed throughout the pipe.

Water at $27^{\circ} \mathrm{C}$:

$$
\rho=1003 \mathrm{~kg} / \mathrm{m}^{3} ; c=4.179 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K}) ; \mu=855 \times 10^{-6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2} ; k=0.613 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}) ; \operatorname{Pr}=5.83 .
$$

\qquad

Problem 1 - continued

(d) [6 points] As shown in the figure below, a small hot part moves on a long horizontal conveyer belt. A small radiation detector is placed 1 m above the conveyer belt and its receiving surface faces to the right. If the detector receives 1 W of radiative energy when $X=1 \mathrm{~m}$, how much radiant energy [W] would it receive when $X=\sqrt{3} \mathrm{~m}$?
The top surface of the hot part is diffuse and its radiosity does not change with time. Radiation from other surfaces can be ignored.

\qquad

Problem 2 [25 points]

A long horizontal cylindrical rod of diameter $D_{i}=200 \mathrm{~mm}$ has thermal conductivity of $k_{r}=0.5$ $\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$. Uniform volumetric heat generation occurs within the rod at the rate of \dot{q}. The rod is fitted with a cylindrical sleeve having an outer diameter of $D_{o}=400 \mathrm{~mm}$ and the sleeve has thermal conductivity of $k_{s}=4 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$. The outer surface of the sleeve T_{s} is measured to be $127{ }^{\circ} \mathrm{C}$ at steady state and it is exposed to quiescent air at $T_{\infty}=27^{\circ} \mathrm{C}$. Assume the following thermophysical properties of air at the film temperature: $v=20.92 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \alpha=29.9 \times 10^{-6}$ $\mathrm{m}^{2} / \mathrm{s}, k=30 \times 10^{-3} \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$.
(a) Calculate the convective heat transfer coefficient $\left(\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right)$ on the outer surface.
(b) Calculate the uniform volumetric heat generation $\dot{q}\left(\mathrm{~W} / \mathrm{m}^{3}\right)$.
(c) Find the temperature $\left({ }^{\circ} \mathrm{C}\right)$ at the interface between the rod and the sleeve T_{i}.
(d) What is the temperature $\left({ }^{\circ} \mathrm{C}\right)$ at the center of the rod T_{o} ?

List your assumptions below. [2 points]

Start your answer to part (a) here. [8 points]

Circle your division: 1234
Problem 2 - continued
Start your answer to part (c) here. [5 points]

Start your answer to part (c) here. [5 points]

Start your answer to part (d) here. [5 points]
\qquad

Problem 3 [25 points]

A small sphere is suspended inside a large enclosed chamber for thermal processing. The sphere surface temperature is $T_{S}=400 \mathrm{~K}$ and the temperature of the chamber wall is $T_{w}=1,000 \mathrm{~K}$. The sphere and the chamber wall are made of same material, which are diffuse and opaque and have the same spectral absorptivity of $\alpha_{\lambda}=0.2$ for $\lambda<3 \mu \mathrm{~m}$ and $\alpha_{\lambda}=0.6$ for $\lambda>3 \mu \mathrm{~m}$.
(a) Find the total emissivity of the sphere surface ε.
(b) Find the total absorptivity of the sphere surface α.
(c) Find the radiosity for the sphere surface $J\left[\mathrm{~W} / \mathrm{m}^{2}\right]$
(d) Find the radiation exchange between the sphere and the chamber $q^{\prime \prime}\left[\mathrm{W} / \mathrm{m}^{2}\right]$.

Table 12.1 Blackbody Radiation Functions

$\begin{aligned} & \boldsymbol{\lambda} \boldsymbol{T} \\ & (\boldsymbol{\mu m} \cdot \mathbf{K}) \end{aligned}$	$\boldsymbol{F}_{(0 \rightarrow \lambda)}$	$\begin{aligned} & I_{\lambda, b}(\lambda, T) / \sigma T^{5} \\ & (\mu \mathbf{m} \cdot \mathbf{K} \cdot \mathbf{s r})^{-1} \end{aligned}$	$\frac{I_{\lambda, b}(\lambda, T)}{I_{\lambda, b}\left(\lambda_{\max }, T\right)}$
200	0.000000	0.375034×10^{-27}	0.000000
400	0.000000	0.490335×10^{-13}	0.000000
600	0.000000	0.104046×10^{-8}	0.000014
800	0.000016	0.991126×10^{-7}	0.001372
1,000	0.000321	0.118505×10^{-5}	0.016406
1,200	0.002134	0.523927×10^{-5}	0.072534
1,400	0.007790	0.134411×10^{-4}	0.186082
1,600	0.019718	0.249130	0.344904
1,800	0.039341	0.375568	0.519949
2,000	0.066728	0.493432	0.683123
2,200	0.100888	0.589649×10^{-4}	0.816329
2,400	0.140256	0.658866	0.912155
2,600	0.183120	0.701292	0.970891
2,800	0.227897	0.720239	0.997123
2,898	0.250108	0.722318×10^{-4}	1.000000
3,000	0.273232	0.720254×10^{-4}	0.997143
3,200	0.318102	0.705974	0.977373
3,400	0.361735	0.681544	0.943551
3,600	0.403607	0.650396	0.900429
3,800	0.443382	0.615225×10^{-4}	0.851737
4,000	0.480877	0.578064	0.800291
4,200	0.516014	0.540394	0.748139
4,400	0.548796	0.503253	0.696720
4,600	0.579280	0.467343	0.647004
4,800	0.607559	0.433109	0.599610
5,000	0.633747	0.400813	0.554898

Circle your division: 1234
Name \qquad

Problem 3 - continued

5,000	0.633747	0.400813	0.554898
5,200	0.658970	0.370580×10^{-4}	0.513043
5,400	0.680360	0.342445	0.474092
5,600	0.701046	0.316376	0.438002
5,800	0.720158	0.292301	0.404671
6,000	0.737818	0.270121	0.373965
6,200	0.754140	0.249723×10^{-4}	0.345724
6,400	0.769234	0.230985	0.319783
6,600	0.783199	0.213786	0.295973
6,800	0.796129	0.198008	0.274128
7,000	0.808109	0.183534	0.254090
7,200	0.819217	0.170256×10^{-4}	0.235708
7,400	0.829527	0.158073	0.218842
7,600	0.839102	0.146891	0.203360
7,800	0.848005	0.136621	0.189143
8,000	0.856288	0.127185	0.176079
8,500	0.874608	0.106772×10^{-4}	0.147819
9,000	0.890029	0.901463×10^{-5}	0.124801

Start your answer to part (a) here. [7 points]

Circle your division: 1234
Name \qquad

Problem 3 - continued

Start your answer to part (b) here. [6 points]

Start your answer to part (c) here. [6 points]

Circle your division: 1234
Name

Problem 3 - continued

Start your answer to part (d) here. [6 points]
\qquad

Problem 4 [25 points]

A rectangular, open furnace is made of three very long surfaces with cross sectional dimensions as shown in the figure below. Surface 1 and surface 3 are diffuse gray and have an emissivity of 0.5 . Surface 2 is black. The right side of the furnace is exposed to a large room whose wall temperature is 300 K . It is known that surface 1 , surface 2, and surface 3 are all maintained at $1,000 \mathrm{~K}$ using electrical heaters. One view factor F_{13} is given as 0.618 . Convection heat transfer occurs with air inside the furnace at 700 K and a convection heat transfer coefficient $\mathrm{h}=30$ $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$.

Surface 1: diffuse and gray,

(a) For each surface, write the basic radiation heat transfer equation (also called equation of radiosity).
(b) Calculate the relevant view factors.
(c) Calculate the radiosity of each surface of the furnace $\mathrm{J} 1, \mathrm{~J} 2$, and $\mathrm{J} 3(\mathrm{~W} / \mathrm{m} 2)$.
(d) Calculate the power per unit length (W / m) needed to be supplied to surface 2 in order to maintain its temperature at $1,000 \mathrm{~K}$, assuming the outer wall of the furnace is insulated.

List your assumptions below [2 points].

Circle your division: 1234
Name \qquad

Problem 4 - continued

Start your answer to part (a) here. [6 points]

Start your answer to part (b) here. [4 points]

Circle your division: 1234
Name \qquad

Problem 4 - continued

Start your answer to part (c) here. [8 points]

Circle your division: 1234
Name \qquad

Problem 4 - continued

Start your answer to part (d) here. [5 points]

