<Solution for Problem 1>
(a)
$\underline{+2}$ Air at $350 \mathrm{~K} \Rightarrow v_{\text {air }}=20.92 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \operatorname{Pr}_{\text {air }}=0.7, k_{\text {air }}=30 \times 10^{-3} \mathrm{~W} / \mathrm{m}-\mathrm{K}$
$+3 \quad \operatorname{Re}_{D}=\frac{V \cdot D}{v}=\frac{4 \mathrm{~m} / \mathrm{s} \times 0.04 \mathrm{~m}}{20.92 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}=7646.49$
+3 $\overline{N u_{D}}=0.3+\frac{0.62 \operatorname{Re}_{D}^{\frac{1}{2}} \operatorname{Pr}^{\frac{1}{3}}}{\left[1+(0.4 / \operatorname{Pr})^{\frac{2}{3}}\right]^{\frac{1}{4}}} \cdot\left[1+\left(\frac{\operatorname{Re}_{D}}{28,2000}\right)^{\frac{5}{8}}\right]^{\frac{4}{5}}=46.04$
+2 $\quad \bar{h}=\frac{k}{D} \cdot \overline{N u_{D}}=\frac{30 \times 10^{-3} \mathrm{~W} / \mathrm{m}-K}{0.04 \mathrm{~m}} \cdot(46.04)=34.53 \mathrm{~W} / \mathrm{m}^{2}-K$
$\therefore \bar{h}=34.53 W / m^{2}-K$
(b)
+4 $B i=\frac{h \cdot L_{c}}{k_{g}}=\frac{h \cdot R}{k_{g}}=\frac{\left(34.53 \mathrm{~W} / \mathrm{m}^{2}-K\right) \cdot(0.02 \mathrm{~m})}{1.38 \mathrm{~W} / \mathrm{m}-K}=0.5$

For $B i=0.5, \varsigma_{1}=0.9408$ and $C_{1}=1.1143$ (cylinder)

+ +3 $\quad F o=\frac{\alpha \cdot t}{R^{2}}=\frac{\left(0.8 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right) \cdot(120 \mathrm{~s})}{(0.02 \mathrm{~m})^{2}}=0.24>0.2$
+3 $\quad \theta_{0}^{*}=\frac{T_{r=0, t=120 s}-T_{\infty}}{T_{i}-T_{\infty}}=C_{1} \cdot \exp \left(-\varsigma_{1}^{2} \cdot F o\right)=1.1143 \cdot \exp \left(-0.9408^{2} \cdot 0.24\right)=0.901046$
+2 $T_{r=0, t=120 s}=T_{\infty}+\theta_{0}^{*} \cdot\left(T_{i}-T_{\infty}\right)=300 \mathrm{~K}+90.1 \mathrm{~K}=390.1 \mathrm{~K}$
$\therefore T_{r=0, t=120 s}=390.1 \mathrm{~K}$
(c) $\underline{+8}$

No Assumptions-1
<Solution for Problem 2>
(a)
+3 $q_{\text {electric }}=q_{\text {conv }}+q_{\text {evap }}$
+4 $\quad q_{c o n v}=h \cdot A \cdot\left(T_{s}-T_{\infty}\right)$
+4 $q_{\text {eva }}=\dot{m} \cdot h_{f g}=n_{A}^{"}\left[\rho_{A, s a t}\left(T_{s}\right)-\rho_{A, \infty}\left(T_{\infty}\right)\right] \cdot A \cdot h_{f g}$
where $\dot{m}=n_{A}^{\prime \prime} \cdot A=h_{m} \cdot A \cdot\left[\rho_{A, s a t}\left(T_{s}\right)-\rho_{A, \infty}\left(T_{\infty}\right)\right]$

Overall,
$q_{\text {electric }}=\frac{\dot{m} \cdot\left(T_{s}-T_{\infty}\right)}{\rho_{A, s a t}\left(T_{s}\right)-\rho_{A, \infty}\left(T_{\infty}\right)} \cdot \rho c_{p} L e^{2 / 3}+\dot{m} \cdot h_{f g}$
$\pm 1 \quad \therefore q_{\text {electric }}=q_{\text {conv }}+q_{\text {evap }}$ or $q_{\text {electric }}=\frac{\dot{m} \cdot\left(T_{s}-T_{\infty}\right)}{\rho_{A, \text { sat }}\left(T_{s}\right)-\rho_{A, \infty}\left(T_{\infty}\right)} \cdot \rho c_{p} L e^{2 / 3}+\dot{m} \cdot h_{f g}$
(b)
$+4 \quad \frac{h}{h_{m}}=\frac{h \cdot A}{h_{m} \cdot A}=\rho c_{p} L e^{2 / 3}$
$h \cdot A=h_{m} \cdot A \cdot \rho c_{p} L e^{2 / 3}=\frac{\dot{m}}{\rho_{A, s a t}\left(T_{s}\right)-\rho_{A, \infty}\left(T_{\infty}\right)} \cdot \rho c_{p} L e^{2 / 3}$
+4 where $L e=\frac{\alpha}{D_{A B}}$
$\pm 4 \quad \dot{m} \cdot A=\frac{\dot{m}}{\rho_{A, s a t}\left(T_{s}\right)-\rho_{A, \infty}\left(T_{\infty}\right)} \cdot \rho c_{p} L e^{2 / 3}$
(c)
$+1 \quad T_{\text {film }}=\frac{T_{s}+T_{\infty}}{2}=\frac{(310+290) K}{2}=300 \mathrm{~K}$

At 300 K ,
+1 $\rho_{\text {air }}=1.1614 \mathrm{~kg} / \mathrm{m}^{3}, c_{p, \text { air }}=1,007 \mathrm{~J} / \mathrm{kg}-K, \alpha_{\text {air }}=22.5 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, D_{A B}=26 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$

At $T_{s}=310 \mathrm{~K}$,
$+1$
$\rho_{A, s}=\frac{1}{v_{g, a i r}}=\frac{1}{22.93 \mathrm{~m}^{3} / \mathrm{kg}}=0.043611 \mathrm{~kg} / \mathrm{m}^{3}, h_{f g}=2,414 \times 10^{3} \mathrm{~J} / \mathrm{kg}$
+1 Also, $\rho_{A, \infty}=0(d r y$ air $)$
$+1 \quad q_{\text {electric }}=\frac{\dot{m} \cdot\left(T_{s}-T_{\infty}\right)}{\rho_{A, s a t}\left(T_{s}\right)-\rho_{A, \infty}\left(T_{\infty}\right)} \cdot \rho_{\text {air }} c_{p, a i r} L e^{2 / 3}+\dot{m} \cdot h_{f g}=\frac{\dot{m} \cdot\left(T_{s}-T_{\infty}\right)}{\rho_{A, s a t}\left(T_{s}\right)} \cdot \rho_{\text {air }} c_{p, a i r}\left(\frac{\alpha}{D_{A B}}\right)^{2 / 3}+\dot{m} \cdot h_{f g}$
$\therefore q_{\text {electric }}=\frac{\dot{m} \cdot(310-290) \mathrm{K}}{0.043611 \mathrm{~kg} / \mathrm{m}^{3}} \cdot\left(1.1614 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot(1,007 \mathrm{~J} / \mathrm{kg}-\mathrm{K})\left(\frac{22.5 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}{26 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}\right)^{2 / 3}+\dot{m} \cdot\left(2,414 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)=3,000 \mathrm{~W}$ $\Rightarrow \dot{m}=0.001034 \mathrm{~kg} / \mathrm{s}$
$\pm 1 \quad \dot{m}=0.001034 \mathrm{~kg} / \mathrm{s}$

No Assumptions - 1
<Solution for Problem 3>
(a)

At $T_{\text {film,i }}=162.5^{\circ} \mathrm{C}, v_{\text {air }}=30.67 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \mathrm{Pr}_{\text {air }}=0.687, k_{\text {air }}=0.0363 \mathrm{~W} / \mathrm{m}-\mathrm{K}$
$+\underline{3} \operatorname{Re}_{L}=\frac{U_{\infty} L}{v}=\frac{(30 \mathrm{~m} / \mathrm{s}) \cdot(1 \mathrm{~m})}{30.67 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}=9.781155 \times 10^{5}>\operatorname{Re}_{\text {critical }}=5 \times 10^{5} \Rightarrow$ mixed boundary layer

$$
+3
$$

$\therefore \operatorname{Re}_{L}=9.781155 \times 10^{5} \Rightarrow$ mixed boundary layer
(b)
+4 $\overline{N u_{L}}=\left(0.037 \cdot \operatorname{Re}_{L}^{4 / 5}-871\right) \cdot \operatorname{Pr}^{1 / 3}=\left[0.037 \cdot\left(9.78155 \times 10^{5}\right)^{4 / 5}-871\right] \cdot(0.687)^{1 / 3}=1,255.31$
+4 $\overline{N u_{L}}=\frac{\overline{h_{L}} L_{c}}{k_{\text {air }}}=1,255.31 \Rightarrow \overline{h_{L}}=45.5678 \mathrm{~W} / \mathrm{m}^{2}-K$
$\therefore \overline{h_{L}}=45.5678 \mathrm{~W} / \mathrm{m}^{2}-K$
(c)
$+3 \quad B i=\frac{\overline{h_{L}} \cdot L_{c}}{k_{s}}$ where $L_{c}=\frac{V}{A_{s}}=\frac{D}{4}$
$+2 B i=\frac{\left(45.5678 \mathrm{~W} / \mathrm{m}^{2}-K\right) \cdot\left(\frac{0.1 \mathrm{~m}}{4}\right)}{100 \mathrm{~W} / \mathrm{m}-K}=0.011392<0.1 \Rightarrow$ Lump capacitance analysis is valid.
$+3$
$\therefore B i=0.011392 \Rightarrow$ Lump capacitance analysis is valid.
(d)
$+4 \frac{\theta}{\theta_{i}}=\frac{T-T_{i}}{T_{\infty}-T_{i}}=\frac{(30-25)^{\circ} \mathrm{C}}{(300-25)^{\circ} \mathrm{C}}=0.018182=\exp (-B i \cdot F o)$
where Fo $=\frac{\alpha \cdot t}{L_{c}{ }^{2}}$ and $\alpha=\frac{k_{s}}{\rho_{s} \cdot c_{p, s}}=\frac{100 \mathrm{~W} / \mathrm{m}-\mathrm{k}}{\left(2,702 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot(903 \mathrm{~J} / \mathrm{kg}-\mathrm{K})}=4.0985 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$+2 \therefore \frac{\theta}{\theta_{i}}=0.018182=\exp \left[-(0.011392) \cdot \frac{\left(4.0985 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right) \cdot t_{30^{\circ} \mathrm{C}}}{\left(\frac{0.1 \mathrm{~m}}{4}\right)^{2}}\right]$
$\underline{+4}$ Solve for $t_{30^{\circ} \mathrm{C}} \Rightarrow t_{30^{\circ} \mathrm{C}}=5,364.28$ seconds

$$
\therefore t_{30^{\circ} \mathrm{C}}=5,364.28 \text { seconds }=1.49 \mathrm{hrs} .
$$

(e)
$\operatorname{Re}_{\mathrm{x}=10 \mathrm{~cm}}<\mathrm{Re}_{\mathrm{x}, \mathrm{critical}} \Rightarrow$ The turbulent transition is tripped earlier than without the ring case

