ME 315
 Exam 2
 8:00-9:00 PM
 Tuesday, March 10, 2009

- This is a closed-book, closed-notes examination. There is a formula sheet at the back.
- You must turn off all communications devices before starting this exam, and leave them off for the entire exam.
- Please write legibly and show all work for your own benefit. Please show your final answers in the boxes provided.
- State all assumptions.
- Please arrange all your sheets in the correct order. Make sure they are all included.

Name: \qquad
Last
First

CIRCLE YOUR DIVISION

Div. 1 (9:30 am)

Prof. Murthy
Div. 2 (12:30 pm)

Prof. Choi

Problem	Score
$\mathbf{1}$	
(20 Points)	
2	
(40 Points)	
3	
(40 Points)	
Total	
(100 Points)	

1. Consider the following two objects with the same geometry but different sizes exposed to nitrogen gas. The two objects are at 500 K , while the N_{2} gas has a temperature of 300 K .

ObjectB

All properties may be evaluated at 400 K : For nitrogen, you are given thermal conductivity, $k=$ $26.0 \times 10^{-3} \mathrm{~W} / \mathrm{mK}$; density, $\rho=1.0 \mathrm{~kg} / \mathrm{m}^{3}$; specific heat, $c_{p}=1000 \mathrm{~J} / \mathrm{kgK}$; kinematic viscosity, v $=18.2 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.

With given conditions, the heat flux in object A is found to be $\mathrm{q}_{\mathrm{s} 1}{ }^{"}=2,000 \mathrm{~W} / \mathrm{m}^{2}$. What is the average convective heat transfer coefficient $\left(\mathrm{h}_{2}\right)$ and heat flux in $\mathrm{q}_{\mathrm{s} 2}$ in object B ?

$\mathrm{h}_{2}=$	$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$
$\mathrm{q}_{\mathrm{s} 2}{ }^{\prime \prime}=$	$\mathrm{W} / \mathrm{m}^{2}$

Solution

$\overline{N u}=f(R e, P r)=\frac{h L_{c}}{k} ; \operatorname{Re}=\frac{\rho U L_{c}}{\mu} \quad \operatorname{Pr}=\frac{v}{\alpha}$
$\alpha_{1}=\alpha_{2} \rightarrow P r_{1}=P r_{2}$
20. $L_{c 1}=L_{c 2}, U_{1}=20 \cdot U_{2} \rightarrow R e_{1}=R e_{2}$
$\therefore \overline{N u}_{1}=\overline{N u}_{2} \rightarrow \frac{h_{1} L_{c 1}}{k}=\frac{h_{2} L_{c 2}}{k}$
$\therefore h_{2}=\frac{h_{1} L_{c 1}}{L_{c 2}}=\frac{h_{1} L_{c 1}}{20 \cdot L_{c 1}}=\frac{h_{1}}{20}$
$q_{1}^{\prime \prime}=h_{1} \cdot\left(T_{s, 1}-T_{\infty}\right)=h_{1} \cdot(500-300)=2000 \mathrm{~W} / \mathrm{m}^{2} \rightarrow h_{1}=10 \mathrm{~W} / \mathrm{m}^{2}-K$
$\therefore h_{2}=\frac{h_{1}}{20}=0.5 \mathrm{~W} / \mathrm{m}^{2}-K$
$q_{2}^{\prime \prime}=h_{2} \cdot\left(T_{s, 2}-T_{\infty}\right)=\left(0.5 \mathrm{~W} / \mathrm{m}^{2}-K\right) \cdot(500-300) K=100 \mathrm{~W} / \mathrm{m}^{2}$
$\therefore q_{2}^{\prime \prime}=100 \mathrm{~W} / \mathrm{m}^{2}$
2. A spherical metal ball of a radius, $r_{o}=0.1 \mathrm{~m}$ is initially at $\mathrm{T}_{\mathrm{i}}=400 \mathrm{~K}$. At $\mathrm{t}=0$, the ball is submerged in a fluid, where convective heat transfer coefficient, h , is $300 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and the temperature, T_{∞}, is 300 K . This ball is assumed to have a uniform temperature at any time.

Fluid

$T_{\text {_ }}=300 \mathrm{~K}$
$h=300 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

You are given the following properties of the ball: Thermal conductivity, $k=30 \mathrm{~W} / \mathrm{mK}$; density, $\rho=9000 \mathrm{~kg} / \mathrm{m}^{3}$; heat capacity, $c_{p}=500 \mathrm{~J} / \mathrm{kgK}$.
(i) Determine thermal time constant $\left(\tau_{\mathrm{t}}\right)$ of the ball and the temperature of the ball at $\mathrm{t}=\tau_{\mathrm{t}}$.

$$
\begin{array}{ll}
\tau_{\mathrm{t}}= & \text { second } \\
\mathrm{T}= & \mathrm{K}
\end{array}
$$

(ii) Evaluate the validity of the uniform temperature assumption. Provide reasoning.

Valid ? Invalid ? (Circle one.)

Reason:

If your answer states Valid, stop here and proceed to problem \#3. If it is Invalid, go to (iii) on the next page.
(iii) Determine the temperature at the center of the ball at $\mathrm{t}=\tau_{\mathrm{t}}$.

$$
\mathrm{T}=\quad \mathrm{K}
$$

Solution

(i)
$\tau_{t}=\frac{\rho V C_{p}}{h_{\text {conv }} A_{s}}$
$V=\frac{4}{3} \pi r_{o}^{3}$
$A_{s}=4 \pi r_{o}^{2}$
$\therefore \tau_{t}=\frac{\rho V C_{p}}{h_{\text {conv }} A_{s}}=\frac{\rho \frac{4}{3} \pi r_{o}^{3} C_{p}}{h_{\text {conv }} 4 \pi r_{o}^{2}}=\frac{\rho r_{o} C_{p}}{3 h_{\text {conv }}}=\frac{\left(9000 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot(0.1 \mathrm{~m}) \cdot(500 \mathrm{~J} / \mathrm{kg}-\mathrm{K})}{3 \cdot\left(300 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}\right)}=500 \mathrm{sec}$
$\therefore \tau_{t}=500 \mathrm{sec}$
$\frac{\theta}{\theta_{i}}=\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=\exp \left(-\frac{t}{\tau_{t}}\right) ; t=\tau_{t} \quad \therefore \frac{t}{\tau_{t}}=1$
$\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=\exp (-1)$
$\therefore T=T_{\infty}+\left(T_{i}-T_{\infty}\right) \cdot \exp (-1)=300+(400-300) \cdot \exp (-1)=336.788 K$
$\therefore T_{t=\tau_{t}}=336788 K$
(ii)

$$
B i=\frac{h_{\text {conv }} \cdot L_{c}}{k_{\text {solid }}} ; \quad L_{c}=\frac{r_{o}}{3}=\frac{0.1 m}{3}
$$

$\therefore B i=\frac{\left(300 \mathrm{~W} / \mathrm{m}^{2}-K\right) \cdot\left(\frac{0.1 m}{3}\right)}{(30 \mathrm{~W} / m-K)}=0.333>0.1$

\therefore InvalidbeacuseBi $=0.333>0.1$

(iii)

$$
B i=\frac{h_{\text {conv }} \cdot r_{o}}{k_{\text {solid }}}=\frac{\left(300 \mathrm{~W} / \mathrm{m}^{2}-K\right) \cdot(0.1 \mathrm{~m})}{30 \mathrm{~W} / \mathrm{m}-K}=1.0
$$

From the Table 5.1,
$\zeta_{1}=1.5708, \quad C_{1}=1.2732$
$\theta_{o}^{*}=\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=C_{1} \cdot \exp \left(-\zeta_{1} \cdot F o\right)$
$F o=\frac{\alpha t}{r_{o}^{2}} \quad ; \quad \alpha=\frac{k}{\rho \cdot C_{p}}$
$\therefore F o=\frac{k}{\rho \cdot C_{p}} \cdot \frac{t}{r_{o}^{2}}=\frac{(30 \mathrm{~W} / \mathrm{m}-K)}{\left(9000 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot(500 \mathrm{~J} / \mathrm{kg}-\mathrm{K})} \cdot \frac{(500 \mathrm{sec})}{(0.1 \mathrm{~m})^{2}}=0.333$
$\therefore \theta_{o}^{*}=\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=\frac{T-300}{400-300}=(1.2732) \cdot \exp \left[-(1.5708)^{2} \cdot(0.333)\right]=0.5598$
$\therefore T_{r=0,500 \mathrm{sec}}=355.983 \mathrm{~K}$
3. Consider unsteady heat conduction in a 2 D square domain of side 2 m , as shown below. The domain is meshed with a square mesh with $\Delta x=\Delta y=1 \mathrm{~m}$. The initial temperature at all grid points is 300 K . At time $\mathrm{t}=0$, the boundary conditions shown below are applied. You are asked to determine how the temperatures of grid points 1 and 2 change with time using an explicit time stepping scheme.

You are given the following material properties:
$\rho=2000 \mathrm{~kg} / \mathrm{m}^{3} \quad \mathrm{k}=100 \mathrm{~W} / \mathrm{mK} \quad \mathrm{C}_{\mathrm{p}}=300 \mathrm{~J} / \mathrm{kgK}$

(i) You are given the choice of two time steps, $\Delta \mathrm{t}=500 \mathrm{~s}$ and $\Delta \mathrm{t}=2000 \mathrm{~s}$. Which one would you choose, and why?
$\Delta t=$
seconds
Reason:
(ii) Develop analytical equations for T_{1} and T_{2} at time step $t=\Delta t$ in terms of neighbor temperatures, material properties and mesh parameters. Show analytical expressions for the discrete equations here.

$$
\begin{aligned}
& \mathrm{T}_{1}= \\
& \mathrm{T}_{2}=
\end{aligned}
$$

(iii) Using the value of Δt you chose in part (i), determine the numerical values of the coefficients in the discrete equations derived in part (ii).

$$
\begin{aligned}
& \mathrm{T}_{1}= \\
& \mathrm{T}_{2}=
\end{aligned}
$$

(iv) Find the numerical values of the temperatures T_{1} and T_{2} at $t=\Delta t$ using the explicit scheme.

$$
\begin{aligned}
& \mathrm{T}_{1}(\mathrm{t}=\Delta \mathrm{t})= \\
& \mathrm{T}_{2}(\mathrm{t}=\Delta \mathrm{t})=
\end{aligned}
$$

Solution

(i)

For $2-D$, the stability limit is $F o \leq \frac{1}{4}$
$F o=\frac{\alpha \cdot \Delta t}{(\Delta x)^{2}} ; \alpha=\frac{k}{\rho \cdot c_{p}}=\frac{100 \mathrm{~W} / \mathrm{m}-K}{\left(2000 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot(300 \mathrm{~J} / \mathrm{kg}-\mathrm{K})}=0.000167 \mathrm{~m}^{2} / \mathrm{s}$
$\therefore F o=\frac{\left(0.000167 m^{2} / s\right) \cdot \Delta t}{(1 m)^{2}} \leq \frac{1}{4} \rightarrow \Delta t \leq 1500 s$
$\therefore \Delta t=500$ sec is suitable.
(ii)

Node 1

$$
\begin{aligned}
& \therefore T_{1}^{p+1}=T_{1}^{p}+\frac{2 \cdot \Delta t}{\rho \cdot c_{p} \cdot \Delta x \cdot \Delta y} \cdot\left[k\left(T_{2}^{p}-T_{1}^{p}\right)+h \Delta y\left(T_{a i r}-T_{1}^{p}\right)+\frac{k}{2}\left(T_{4}^{p}-T_{1}^{p}\right)+\frac{k}{2}\left(T_{7}^{p}-T_{1}^{p}\right)\right] \\
& \text { or } \\
& T_{1}^{p+1}=T_{1}^{p}+2 \cdot F o\left(T_{2}^{p}-T_{1}^{p}\right)+\frac{2 \cdot h \cdot \Delta t}{\rho \cdot c_{p} \cdot \Delta x}\left(T_{a i r}-T_{1}^{p}\right)+F o \cdot\left(T_{4}^{p}-T_{1}^{p}\right)+F o \cdot\left(T_{7}^{p}-T_{1}^{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{E}_{\text {in }}-\mathscr{E}_{\text {out }}-\mathscr{E}_{\text {gen }}=\mathscr{E}_{\text {st }} \quad ; \quad \mathscr{E}_{\text {in }}^{\prime}=q^{\prime}{ }_{E}+q^{\prime}{ }_{W}+q^{\prime}{ }_{S}+q^{\prime}{ }_{N} \quad \mathscr{E}_{\text {out }}=0 \quad \mathscr{E}_{\text {gen }}=0 \\
& q^{\prime}{ }_{E}=-k \frac{\Delta y}{\Delta x}\left(T_{1}^{p}-T_{2}^{p}\right) \quad \quad q^{\prime}{ }_{W}=h \Delta y\left(T_{\text {air }}-T_{1}^{p}\right) \\
& q^{\prime}{ }_{S}=-k \frac{\Delta x}{2 \cdot \Delta y}\left(T_{1}^{p}-T_{4}^{p}\right) \quad q^{\prime}{ }_{N}=-k \frac{\Delta x}{2 \cdot \Delta y}\left(T_{1}^{p}-T_{7}^{p}\right) \\
& \dot{E}_{s t}^{\underline{x}}=\rho \cdot c_{p} \cdot \frac{\Delta x}{2} \cdot \Delta y \cdot \frac{T_{1}^{p+1}-T_{1}^{p}}{\Delta t} \\
& \therefore q_{E}{ }_{E}+q^{\prime}{ }_{W}+q^{\prime}{ }_{S}+q^{\prime}{ }_{N}=\mathscr{E}_{s t} \\
& k \frac{\Delta y}{\Delta x}\left(T_{2}^{p}-T_{1}^{p}\right)+h \Delta y\left(T_{\text {air }}-T_{1}^{p}\right)+k \frac{\Delta x}{2 \cdot \Delta y}\left(T_{4}^{p}-T_{1}^{p}\right)+k \frac{\Delta x}{2 \cdot \Delta y}\left(T_{7}^{p}-T_{1}^{p}\right)=\rho \cdot c_{p} \cdot \frac{\Delta x}{2} \cdot \Delta y \cdot \frac{T_{1}^{p+1}-T_{1}^{p}}{\Delta t} \\
& k\left(T_{2}^{p}-T_{1}^{p}\right)+h \Delta y\left(T_{\text {air }}-T_{1}^{p}\right)+\frac{k}{2}\left(T_{4}^{p}-T_{1}^{p}\right)+\frac{k}{2}\left(T_{7}^{p}-T_{1}^{p}\right)=\rho \cdot c_{p} \cdot \frac{\Delta x}{2} \cdot \Delta y \cdot \frac{T_{1}^{p+1}-T_{1}^{p}}{\Delta t} \\
& T_{1}^{p+1}=T_{1}^{p}+\frac{2 \cdot \Delta t}{\rho \cdot c_{p} \cdot \Delta x \cdot \Delta y} \cdot\left[k\left(T_{2}^{p}-T_{1}^{p}\right)+h \Delta y\left(T_{\text {air }}-T_{1}^{p}\right)+\frac{k}{2}\left(T_{4}^{p}-T_{1}^{p}\right)+\frac{k}{2}\left(T_{7}^{p}-T_{1}^{p}\right)\right] \\
& =T_{1}^{p}+2 \cdot F o\left(T_{2}^{p}-T_{1}^{p}\right)+\frac{2 \cdot h \cdot \Delta t}{\rho \cdot c_{p} \cdot \Delta x}\left(T_{\text {air }}-T_{1}^{p}\right)+F o \cdot\left(T_{4}^{p}-T_{1}^{p}\right)+F o \cdot\left(T_{7}^{p}-T_{1}^{p}\right) \\
& \left(\because F o=\frac{\alpha \cdot \Delta t}{\Delta x \cdot \Delta y}=\frac{\alpha \cdot \Delta t}{(\Delta x)^{2}} \quad \text { and } \quad \alpha=\frac{k}{\rho \cdot c_{p}}\right)
\end{aligned}
$$

Node 2

$T_{2}^{p+1}=(1-4 \cdot F o) \cdot T_{2}^{p}+F o \cdot\left(T_{1}^{p}+T_{3}^{p}+T_{5}^{p}+T_{8}^{p}\right)$

$$
\therefore T_{2}^{P^{+1}}=\left(1-4 F \phi T_{2}^{p}+F \sigma\left(T_{1}^{p}+T_{3}^{p}+T_{5}^{p}+T_{8}^{p}\right)\right.
$$

(iii)

For $\Delta t=500 \mathrm{sec}, F o=0.083$

$$
\frac{\alpha \cdot \Delta t}{\Delta x \cdot \Delta y}=\frac{\alpha \cdot \Delta t}{(\Delta x)^{2}}=F o=0.083 \quad ; \quad \Delta x=\Delta y
$$

$$
\frac{2 \cdot h \Delta t}{\rho \cdot c_{p} \cdot \Delta x}=\frac{2 \cdot\left(100 \mathrm{~W} / \mathrm{m}^{2}-K\right) \cdot(500 \mathrm{sec})}{\left(2000 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot(300 \mathrm{~J} / \mathrm{kg}-\mathrm{K}) \cdot(1 \mathrm{~m})}=0.1667
$$

$$
1-4 \cdot F o=1-4 \cdot 0.083=0.6667
$$

$$
\begin{aligned}
& T_{1}^{p+1}=T_{1}^{p}+2 \cdot F o\left(T_{2}^{p}-T_{1}^{p}\right)+\frac{2 \cdot h \cdot \Delta t}{\rho \cdot c_{p} \cdot \Delta x}\left(T_{\text {air }}-T_{1}^{p}\right)+F o \cdot\left(T_{4}^{p}-T_{1}^{p}\right)+F o \cdot\left(T_{7}^{p}-T_{1}^{p}\right) \\
& =T_{1}^{p}+2 \cdot(0.083) \cdot\left(T_{2}^{p}-T_{1}^{p}\right)+(0.1667) \cdot\left(T_{\text {air }}-T_{1}^{p}\right)+(0.083) \cdot\left(T_{4}^{p}-T_{1}^{p}\right)+(0.083) \cdot\left(T_{7}^{p}-T_{1}^{p}\right)
\end{aligned}
$$

$$
T_{2}^{p+1}=(1-4 \cdot F o) \cdot T_{2}^{p}+F o \cdot\left(T_{1}^{p}+T_{3}^{p}+T_{5}^{p}+T_{8}^{p}\right)
$$

$$
=[1-4 \cdot(0.083)] \cdot T_{2}^{p}+(0.083) \cdot\left(T_{1}^{p}+T_{3}^{p}+T_{5}^{p}+T_{8}^{p}\right)
$$

$$
=(0.6667) \cdot T_{2}^{p}+(0.083) \cdot\left(T_{1}^{p}+T_{3}^{p}+T_{5}^{p}+T_{8}^{p}\right)
$$

$$
\begin{aligned}
\therefore & T_{1}^{p+1}=T_{1}^{p}+2 \cdot(0.083) \cdot\left(T_{2}^{p}-T_{1}^{p}\right)+(0.1667) \cdot\left(T_{\text {air }}-T_{1}^{p}\right)+(0.083) \cdot\left(T_{4}^{p}-T_{1}^{p}\right)+(0.083) \cdot\left(T_{7}^{p}-T_{1}^{p}\right) \\
& T_{2}^{p+1}=(0.6667) \cdot T_{2}^{p}+(0.083) \cdot\left(T_{1}^{p}+T_{3}^{p}+T_{5}^{p}+T_{8}^{p}\right)
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& T_{1}^{p+1}=T_{1}^{p}+2 \cdot(0.083) \cdot\left(T_{2}^{p}-T_{1}^{p}\right)+(0.1667) \cdot\left(T_{\text {air }}-T_{1}^{p}\right)+(0.083) \cdot\left(T_{4}^{p}-T_{1}^{p}\right)+(0.083) \cdot\left(T_{7}^{p}-T_{1}^{p}\right) \\
& =300+2 \cdot(0.083) \cdot(300-300)+(0.1667) \cdot(500-300)+(0.083) \cdot(300-300)+(0.083) \cdot(300-300) \\
& =333.34 K \\
& T_{2}^{p+1}=(0.6667) \cdot T_{2}^{p}+(0.083) \cdot\left(T_{1}^{p}+T_{3}^{p}+T_{5}^{p}+T_{8}^{p}\right) \\
& =(0.6667) \cdot(300)+(0.083) \cdot(300+400+300+300) \\
& =307.91 \mathrm{~K}
\end{aligned}
$$

$$
\therefore T_{1}^{p+1}=333.34 \mathrm{~K} \quad T_{2}^{p+1}=307.91 \mathrm{~K}
$$

