
                                                                                                                                                  

ME 315 
Exam 2 

8:00 -9:00 PM 
Tuesday, March 10, 2009 

 
• This is a closed-book, closed-notes examination. There is a formula sheet at the 

back. 
• You must turn off all communications devices before starting this exam, and 

leave them off for the entire exam. 
• Please write legibly and show all work for your own benefit. Please show your 

final answers in the boxes provided. 
• State all assumptions. 
• Please arrange all your sheets in the correct order. Make sure they are all 

included. 
 
 
Name: ____________________________________  
                  Last                                       First 
 
 

CIRCLE YOUR DIVISION 
 
 
Div. 1 (9:30 am)                                            Div. 2 (12:30 pm)                          
Prof. Murthy                                            Prof. Choi          
 
 
Problem Score 
1 
(20 Points) 

 

2 
(40 Points) 

 

3 
(40 Points) 

 

Total 
(100 Points) 
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1. Consider the following two objects with the same geometry but different sizes exposed to 
nitrogen gas. The two objects are at 500 K, while the N2 gas has a temperature of 300 K. 

 

 
 
All properties may be evaluated at 400 K: For nitrogen, you are given thermal conductivity, k = 
26.0 × 10-3 W/mK; density, ρ = 1.0 kg/m3; specific heat, cp = 1000  J/kgK; kinematic viscosity, ν 
= 18.2 × 10-6 m2/s. 
 
 
 
With given conditions, the heat flux in object A is found to be qs1

’’ = 2,000 W/m2. What is the 
average convective heat transfer coefficient (h2) and heat flux in qs2

’’ in object B? 
 
 
 
 
 
 
 
 
 
 
 

 
h2 =                       W/m2K 
 
qs2

’’=                     W/m2 
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2. A spherical metal ball of a radius, ro = 0.1 m is initially at Ti = 400 K. At t = 0, the ball is 
submerged in a fluid, where convective heat transfer coefficient, h, is 300 W/m2K and the 
temperature, T∞, is 300 K. This ball is assumed to have a uniform temperature at any time. 
 

 
 
 
You are given the following properties of the ball: Thermal conductivity, k = 30 W/mK; density, 
ρ = 9000 kg/m3; heat capacity, cp = 500 J/kgK. 
 
 
 

(i) Determine thermal time constant (τt) of the ball and the temperature of the ball at t = τt. 
 
 
 
 
 
 
 
 
 

(ii) Evaluate the validity of the uniform temperature assumption. Provide reasoning. 
 
 
 
 
 
 
 
 
 
If your answer states Valid, stop here and proceed to problem #3. If it is Invalid, go to (iii) on the 

next page. 
 

 
τt  =                       second 

 
T =                        K 

 
Valid  ?          Invalid ?     (Circle one.) 

 
 

Reason:  
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(iii) Determine the temperature at the center of the ball at t = τt. 
 

 
 
 
 
 
 
 
 
 

 
T =                  K 

 



                                                                                                                                           

 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                           

 8 

 



                                                                                                                                           

 9 

 
3. Consider unsteady heat conduction in a 2D square domain of side 2 m, as shown below.  The 
domain is meshed with a square mesh with ∆x=∆y=1 m.  The initial temperature at all grid 
points is 300 K. At time t=0, the boundary conditions shown below are applied. You are asked to 
determine how the temperatures of grid points 1 and 2 change with time using an explicit time 
stepping scheme. 
 
You are given the following material properties: 

3
p2000 kg/m     k=100 W/mK   C 300 J/kgKρ = =  

 
300 K 300 K 300 K

400 K

300 K300 K300 K

1 2

h = 100 
W/m2 K

Tair =500 K 3

4 5 6

7 8 9

 
 

(i) You are given the choice of two time steps, ∆t=500 s and ∆t=2000 s. Which one would 
you choose, and why? 

 
 
 
 
 
 
 

(ii) Develop analytical equations for T1 and T2  at time step t = ∆t in terms of neighbor 
temperatures, material properties and mesh parameters. Show analytical expressions for 
the discrete equations here. 

 
 
 
 
 
 
 

∆t =                                  seconds 
 
Reason: 

T1  = 
 
 
 
T2 = 
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(iii) Using the value of ∆t you chose in part (i), determine the numerical values of the 
coefficients in the discrete equations derived in part (ii).  
 
 
 
 
 

 
 
 
 
  

(iv) Find the numerical values of the temperatures T1  and T2  at t= ∆t  using the explicit 
scheme. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       T1  = 
 
 
 
       T2 = 
 

T1 (t=∆t)  = 
 
T2 (t=∆t) = 
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BASIC EQUATION SHEET 
 
 
Conservation Laws 
Control Volume Energy Balance:

. . . .

in out gen stE E E E− + = ; 
.

st p
dTE mC dt= ; 

. .

genE qV=  

Surface Energy Balance: 
. .

0in outE E− =   

 
Conduction 
Fourier’s Law: "

,cond x
Tq k
x

∂
= −

∂
; "

,cond n
Tq k
n

∂
= −

∂
; "

cond condq q A=  

Heat Flux Vector: " " " "
x y z

T T Tq q i q j q k k i j k
x y z

 ∂ ∂ ∂
= + + = − + + ∂ ∂ ∂ 

      
 

Heat Diffusion Equation: 

Rectangular Coordinates:
.

p
T T T Tk k k q C

x x y y z z t
ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

Cylindrical Coordinates:
.

2

1 1
p

T T T Tkr k k q C
r r r r z z t

ρ
φ φ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 

Spherical Coordinates: 
.

2
2 2 2 2

1 1 1 sin
sin sin p

T T T Tkr k k q C
r r r r r t

θ ρ
θ φ φ θ θ θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

 
Thermal Resistance Concepts: 

Conduction Resistance: ,

planewall

t cond
LR
kA

= ; ( )
,

ln
2

cylinder
o i

t cond

r r
R

lkπ
= ; ( ) ( )

,

1 1
4

sphere
i o

t cond

r r
R

kπ
−

=  

Convection Resistance:
,

1planewall

t conv
conv

R
h A

= ; 
,

1
2

cylinder

t conv
conv

R
rlhπ

= ; 
, 2

1
4

sphere

t conv
conv

R
r hπ

=  

Radiation Resistance:
,

1planewall

t rad
rad

R
h A

= ; 
,

1
2

cylinder

t rad
rad

R
rlhπ

= ; 
, 2

1
4

sphere

t rad
rad

R
r hπ

=  

Combined Convection and Radiation Surface:
, ,

1 1 1

conv rad t conv t radR R R+

= +  

Contact Resistance:
,

1
t contact

contact contact

R
h A

=  

 
Thermal Energy Generation:  

( )
.

2 2

21
2

plane wall

s
q L xT x T

k L
 

− = − 
 

;      ( )
.

2 2

21
4

cylinder
o

s
o

q r rT r T
k r
 

− = − 
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Extended Surfaces: 

Convective Tip: ( ) ( ) ( ) ( )
( ) ( ) ( )

cosh sinh
cosh sinhb

m L x h mk m L xx
mL h mk mL

θ
θ

   − + −   =
+

 

( ) ( ) ( ) ( )
( ) ( ) ( )

1/ 2 sinh cosh
cosh sinhfin c b

mL h mk mL
q hPkA

mL h mk mL
θ

+
=

+
 

Adiabatic Tip: ( ) ( )
( )

cosh
coshb

m L xx
mL

θ
θ

 − = ; ( ) ( )1/ 2 tanhfin c bq hPkA mLθ=  

Prescribed Tip Temperature: ( ) ( ) ( ) ( )
( )

sinh sinh
sinh

L b

b

mx m L xx
mL

θ θθ
θ

 + − =  

( ) ( ) ( )
( )

1/ 2 cosh
sinh

L b
fin c b

mL
q hPkA

mL
θ θ

θ
−

=  

Infinitely Long Fin: ( ) mx

b

x
e

θ
θ

−= ; ( )1/ 2
fin c bq hPkA θ=  

2

c

hPm
kA

= ; b bT Tθ ∞= − ; , ,fin conv finsurface conv tipq q q= + ; ,conv tip c Lq hAθ=   

Fin Effectiveness:
,

fin
fin

c b b

q
hA

ε
θ

= ; ,

,

t conv base
fin

t cond fin

R
R

ε −

−

=  

Fin Efficiency: fin
fin

fin b

q
hA

η
θ

= ; 
( )tanhadiabatic

fin

mL
mL

η = ; c
c

AL L
P

= + ; 
( )tanh c

fin
c

mL
mL

η =  

( )1 1fintotal
o fin

total b total

NAq
hA A

η η
θ

= = − − ; ,
1

t cond fin
fin fin

R
hAη− = ; ,

1
t cond finarray

o total

R
hAη− =  

 
Two Dimensional Steady Conduction: 

Conduction Shape Factor: 
2

,
1D

t condR
Sk

=  

Finite Difference Method: 1, 1, , 1 , 1 ,4i j i j i j i j i jT T T T T+ − + −+ + + =  
 
Transient Conduction: 

Lumped System Analysis: t cond conv c

t conv solid

R h LBi
R k

−

−

= = ; exp
i i t

T T t
T T

θ
θ τ

∞

∞

 −
= = − −  

; 
2
c

tFo
L
α

=   

( )( )2exp expconv c

i solid c

h L t Bi Fo
k L

θ α
θ

   
 = − = −         

; 
, ,

p
t t solid t conv

conv s

VC
C R

h A
ρ

τ = = ; 

 Analytical Solutions:
i i

T T
T T

θθ
θ

∗ ∞

∞

−
= =

−
; xx

L
∗ = ; 

o

rr
r

∗ = ; 
2

tt
L
α∗ =  

Plane Wall: ( ) ( )2
1 1 1exp cos

planewall
C Fo xθ ζ ζ∗ ∗≅ − ; ( )2

1 1exp
planewall

o C Foθ ζ∗ = − ; ( )1

1

sin
1

planewall

o
o

Q
Q

ζ
θ

ζ
∗= −   

Long Cylinder: ( ) ( )2
1 1 0 1exp

cylinder
C Fo J rθ ζ ζ∗ ∗≅ − ; ( )2

1 1exp
cylinder

o C Foθ ζ∗ = − ; ( )1 1

1

1 2
cylinder

o
o

JQ
Q

ζ
θ

ζ
∗= −  
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Sphere: ( ) ( )12
1 1

1

sin
exp

sphere

r
C Fo

r
ζ

θ ζ
ζ

∗
∗

∗≅ − ; ( )2
1 1exp

sphere

o C Foθ ζ∗ = − ; 

( ) ( )1 1 1
3

1

sin cos
1 3

sphere

o
o

Q
Q

ζ ζ ζ
θ

ζ
∗
 − = −  

 
 Table 5.1 from the textbook is attached at the end of the formula sheet. 
  
Semi-infinite Solid:  

 Constant Surface Temperature: ( ),
2

s

i s

T x t T xerf
T T tα

−  
=  −  

; ( )"

0

s i
s

x

k T TTq k
x tπα=

−∂
= − =

∂
  

 Constant Surface Heat Flux: ( ) ( )1/ 2" "2
0 02

, exp
4 2i

q t q xx xT x t T erfc
k t k t
α π

α α
   

− = − −   
  

 

 Convection: ( ) 2

2

,
exp

2 2
i

i

T x t T x hx h t x h terfc erfc
T T k k kt t

α α
α α∞

   −   
= − + +       −          

 

  
 

Finite Difference Method: 
 For interior points on a uniform mesh: 

Explicit Method: ( ) ( )1
, , 1, 1, , 1 , 11 4

explicit
P P P P P P

i j i j i j i j i j i jT Fo T Fo T T T T+
+ − + −= − + + + +  

 Implicit Method: ( ) ( )1 1 1 1 1
, , 1, 1, , 1 , 11 4

implicit
P P P P P P

i j i j i j i j i j i jT Fo T Fo T T T T+ + + + +
+ − + −= + − + + +  

 Stability Limits: ( )2
1

2

D

explicit

x
t

α
∆

∆ ≤ ; ( )2
2

4

D

explicit

x
t

α
∆

∆ ≤ ; ( )2
3

6

D

explicit

x
t

α
∆

∆ ≤   

  
Convection 
Newton’s Law of Cooling:    ( )"

conv conv sq h T T∞= − ; "
conv convq q A=  

 
Mass Transfer:    ( )"

, ,A m A s An h ρ ρ ∞= − ; "
evap A fgq n Ah=   ;  ρA = MACA ;  CA = PA,sat/RuT 

Average Heat Transfer Coefficient:    
1

S

conv conv s
s A

h h dA
A

= ∫  

Average Mass Transfer Coefficient:    
1

S

m m s
s A

h h dA
A

= ∫  

Dimensionless Parameters: 

 Reynolds Number:
c

c c
L

VL VLRe ρ
µ ν

= = ;  

Prandtl Number: Pr ν
α

= ; Schmidt Number:
AB

Sc
D
ν

= ; Lewis Number:
AB

Le
D
α

=  

Nusselt Number: conv c

fluid

h LNu
k

= ; Sherwood Number: m c

AB

h LSh
D

=  
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Boundary Layer Thickness: n

t

Prδ
δ

≈ ; n

c

Scδ
δ

≈ ; nt

c

Leδ
δ

≈   

Heat-Mass Analogy:
n

n
Nu Pr
Sh Sc

= ; 1 n
pn

m AB

h k C Le
h D Le

ρ −= =   

 
 
 
Radiation 
Emissive power = 4

sE Tεσ=  

Irradiation received by surface from large surroundings: 4
surrG Tσ=  

                        Irradiation absorbed by surface = αG 
                        Reflected irradiation: ρG 
Gray surface: ε=α 
Opaque surface: 1α ρ+ =  
Radiative heat flux from a gray surface at TS to a large surroundings at Tsurr: 

( ) ( )
( )( )

4 4

2 2

rad s surr rad s surr

rad s surr s surr

q T T h T T

h T T T T

εσ

εσ

′′ = − = −

= + +
 

 
Useful Constants 
σ = Stefan-Boltzmann’s Constant = 8

2 4

W5.67 10
m K

−×  

Ru = Universal gas constant = 8314  J/kmolK 
 
Geometry 
Cylinder: 2A rlπ= ; 2V r lπ=     

Sphere: 24A rπ= ; 34
3

V rπ=  

Triangle:  A= bh/2     b:base  h: height 
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Thermodynamic Properties of Saturated Water 
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