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ME 315 
Exam 2 

Wednesday, November 11, 2015 
 
 This is a closed-book, closed-notes examination. There is a formula sheet 

provided.  You are also allowed to bring your own one-page letter size, double-
sided crib sheet.  

 You must turn off all communications devices before starting this exam, and 
leave them off for the entire exam. 

 Please write legibly and show all work for your own benefit. 
 State all assumptions. 
 Please arrange all your sheets in the correct order. 
 
 
 
Name: ___________________           _____________________  
                           Last                                           First 
 

CIRCLE YOUR DIVISION 
 
 
Div. 1 (8:30 am)       Div. 2 (9:30 am)       Div. 3 (11:30 am)       Div. 4 (3:30 pm) 
   Prof. Naik         Prof. Ruan  Prof. Pan                Prof. Marconnet    

    Your Assigned # : ________ 
   (Only applicable to Div. 3) 
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Problem 2 (40 pts)  
 
Consider a chilly, autumn day at Purdue with wind velocity of U∞ = 2 m/s and an ambient 
temperature of T∞ = 10°C. You forget your jacket at home and your forearms are exposed to the 
cold air.  For the air, assume k = 0.026 W/(m-K), Pr = 0.7, and the viscosity given by the table. 
Recall that α = k / ρcp = ν / Pr. 
 

  [m2/s] 
Air @ 10°C 1.35 × 10-5

Air @ 23.5°C 1.52 × 10-5

Air @ 37°C 1.68 × 10-5

 
For this problem, approximate your forearm as a long cylinder, with diameter D = 75 mm, in 
cross-flow of air with a surface temperature of Ts = 37°C. 
 
(a) (13 pts) Calculate the rate of heat loss per unit area from your arm. 

Film temperature: 23.5 C
2

s
film

T T
T 

     

Reynolds number: 

3

2
5

m
2 75 10 m

s 9868.4
m

1.52 10
s

D
air

u D
Re









 
  


 

For cylinder in cross-flow with air: 1/3 0.618 1/30.193 50.4m
D D DNu CRe Pr Re Pr     

3

2

75 10 m W
50.4 17.5

W m -K0.026
m-K

D
air

hD h
Nu h

k

 
      

Rate of heat loss per unit area:    "
2

W
17.5 37 10 K

m -Kconv sq h T T       "
2

W
472.5

mconvq   

 
(b) (20 pts) Now you run through the fountain outside of ME and your arms are coated 

uniformly with a thin layer of water (DAB = 2.17 × 10-5 m2/s, hfg = 2.4 × 106J/kg).  Assume the 
surrounding air has a relativity humidity of ϕ∞ = 80%.  Calculate the total rate of heat per unit 
area for your wet forearms. 
 

 ρsat,vapor 
[kg/m3] 

Water @ 10°C 1.0 × 10-2

Water @ 23.5°C 1.9 × 10-2 
Water @ 37°C 4.4 × 10-2 

Schmidt number: 

2
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Assume heat and mass transfer analogy is applicable
1/3 0.618 1/30.193 50.4m

D D DSh CRe Sc Re Sc     
3

2
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Alternatively: 
2

5

2
5

m
1.52 10

s 1
m

0.7 2.17 10
s

AB AB

Le
D Pr× D

 





   

 
; 

1/3n
ABm

h k

D Leh   

2

2
5 1/3

W W
17.5 0.026 mm -K m-K 0.0146

m s
2.17 10 1

s

m

m

h
h 

   
 

 

Rate of evaporation of water vapor from the surface: 

        2 2
, , 3

m kg
0.0146 4.4 10 0.8 10

s mevap m A,s A, m A sat s A satm h A h A T T      
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4
2

kg
5.26 10

m -sevapm    

Rate of evaporative heat loss per unit area: 
" 4 6

2 2

kg J W
5.26 10 2.4 10 1262.4

m -s kg mevap evap fgq m h        

Total rate of heat loss per unit area: " " "
total conv evapq q q    "

2

W
1734.9

mtotalq    

 
(c) (7 pts) Now consider that you were wearing a jacket of low thermal conductivity material 

that fits snugly over your forearm adding an effective thermal resistance of R” = 0.05 m2-
K/W.  Assume your arm and jacket are dry and that the thickness of your jacket does not 
change the convective heat transfer coefficient significantly from part (a).  Find the rate of 
heat loss per unit area from your arm with the jacket. 

Thermal resistance due to convection: 
2

" 1 m -K
0.057

WconvR
h

   

Total thermal resistance due to convection and conduction through the jacket: 

 
2 2

" " " m -K m -K
0.05 0.57 0.107

W Wtotal convR R R         

Rate of heat loss per unit area with the jacket: 
   "

, 2"

37 10 K

m -K
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W
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T T
q

R
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"
, 2

W
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Problem 3 (30 pts)  
 
A fluid of specific heat Cp, thermal conductivity k, and viscosity  flows steadily through a 
circular tube of diameter D and length L.  The mass flow rate is m  and the fluid enters with a 
mean temperature of ,m iT .  The flow is turbulent and fully-developed over the entire length of 

the tube. The tube surface (wall) is subjected to a heat flux that decreases linearly from inlet to 

outlet as: " "2 1s o
x

q q
L

   
 

 where " 0oq   is known. 

 
 

(a) (4 pts) Using an appropriate correlation, write an expression for convective heat transfer 

coefficient h inside the tube only in terms of known parameters. 

For turbulent, fully-developed flow with fluid heating: 0.8 0.40.023D D

hD
Nu Re Pr

k
    

2

4

4

m
D

u D D m m
Re

DD
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    
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(b) (10 pts) Derive an expression for variation of the mean fluid temperature  mT x  only in 

terms of known parameters. 
 Considering energy balance for the control volume: in out gen stE E E E       

 " "0p m s p m m p m smC T q Pdx mC T dT mC dT q Pdx          

Integrating: 
 

,

"
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2
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m
pT

q P x
dT dx

mC L
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2
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q P x
T x T x

mC L
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; P D  

 
 

 

 

 

 

 

 

 

(c) (6 pts) Derive an expression for the total rate of heat transfer q to the fluid only in terms 
of known parameters. 

Total rate of heat transfer:  , ,p m o m iq mC T T   

" "2

, , ,

2

2
o o

m o m i m i
p p

q P q PLL
T T L T

mC L mC

 
      

  

"
"

, ,
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q mC T T q PL

mC

 
     

 



 

"
oq q DL  

 

Alternatively: 

 
2 2

" " " " "

0 0 0

2 1 2 2
2 2

LL L

s o o o o

x x L
q q Pdx q D dx q D x q D L q DL

L L L
   

               
     

   
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(d) (5 pts) Derive an expression for variation of the surface (wall) temperature  sT x  only in 

terms of known parameters. 

Considering heat flux at any section:    "
s s mq h T x T x        

"
s

s m

q
T x T x

h
    

 
" "2

,

2 2
1

2
o o

s m i
p

q P qx x
T x T x

mC L Lh

          
  

   

 

 

 

 

 

 

 

 

 

 

 

 
(e) (5 pts) Derive an expression for the axial location maxx  at which the surface (wall) 

temperature is maximum. 

For maximum surface temperature: 
" " "2 2 2

0s o o max o

p p

dT q P q P x q

dx mC mC L hL
   

 
  

1max

p p

xP P

mC L mC hL
   
 

p
max

mC
x L

Dh
 


 for pmC

L
Dh




 

 

 

 
 
 
 
 
 
 


