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ME315 Heat and Mass Transfer
School of Mechanical Engineering, Purdue University
Exam #1
8 —9:30 PM
February 25, 2016

Circle Your Division:

Div. 1 (Prof. Choi) Div. 2 (Mr. Wang)
9:30 — 10:20 AM 12:30 -1:20 PM
Instructions:

° This is a closed-book, closed-notes examination. There is a formula sheet
provided at the end of this exam.

® You must turn off all communications devices before starting this exam,
and leave them off for the entire exam.

o Please write legibly and show all work for receiving partial credit. Please
show your final answers in the boxes provided.

e State all your assumptions.
o Please arrange all your sheets in the correct order.

| Performance |
1 15
2 15
3 15
Total 45
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Problem 1 (15 points)

Answer the following questions with your reasoning.

(a) The temperature profile of a three-layer
composite plane wall is shown in the figure on the
right. You may assume 1-D steady state conduction
with no internal heat generation. Based on the
temperature  profile, rank the thermal
conductivities (ka, ks, and kc) of the three layers

from high to low by filling “A”, “B”, or “C” in the /
subscripts.

ke y>ko y>k)

Temperature

\7

Position

(b) Consider two fins (A and B shown on the right) made
of the same material, with the same circular cross-section
area. These fins are attached to plates with the same base
temperature (73), and subjected to the same convection
condition (% and Tw). Given that fin B is longer than fin A,
compare the following quantities associated with the two
fins by filling “>”, “=”, or “<” in the blanks. (A) (B)
(1) Total fin heat transfer rate: ¢ o

dr8

(2) Fin effectiveness: Era Ep
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(c) A long, rectangular bar of thermal conductivity k is I I I
subjected to convection with a heat transfer coefficient % and S a—

an ambient air temperature 7w as well as radiation with a heat n dm

. . . e e - — G
flux G. Part of the cross section is shown in the figure on the . -—
right. Write the 2-D nodal (finite-difference) equation for e s § }-S—QT"
steady-state heat transfer with constant properties and no 7. IT.
. 5 m— ) 2 3 5 h, Too
internal heat generation. You may assume that the surface "
absorptivity of &= 1, and radiation from the surface can be 4 Nl
neglected. You are also given that Ax = Ay. Using the energy |: Ax :l l

balance method, solve for T4 in terms of the given symbols.
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Problem 2 (15 points)

Consider a composite wall consisting of two layers (A and B). Both layers have the same
thickness of L4 = Lz = 1 m and the identical thermal conductivity of k4 = kz = 0.5 W/m K. Layer
B is radioactive and provides a uniform volumetric heat generation rate g= 1 W/m®. The left (x=
-1 m) and right (x = 1 m) surfaces of the composite wall are subject to convection with a heat
transfer coefficient 2= 1 W/m? K and an ambient temperature T = 300 K. The contact

resistance between layers A and B is negligible. You may assume steady state and neglect any
edge effects.

A\

A B
" Radioactive s
i g4
g =1 W/m?3
qi=? q'r="?
4 0 1 x(m)

300 K
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(b) Calculate the heat fluxes (g; and q) out of the left and right surfaces of the composite wall.
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(c) Calculate the temperature profiles in the layers A and B of the composite wall.

(d) Determine the maximum temperature in the composite wall and the location.
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Problem 3 (15 points)

In an industrial atomization process, spherical droplets (¢ = 2 ¢cm) of molten metal are formed,
initially at 7:= 1500 K. An engineer is asked to investigate the cooling process of the droplets
when exposed to convection at T = 300 K with a heat transfer coefficient of # = 6000 W/m2K.
Radiation losses may be neglected as a first approximation. You are given the following
properties of molten metal: thermal conductivity £ = 60 W/m K; heat capacity Cp = 400 J/kg K;
density p = 9000 ke/m”>.

(a) Assuming the lumped thermal capacitance model, determine the thermal time constant, 7, of
the droplet and the temperature at = 27,

(b) Calculate the total energy (J) lost by the droplet during this time (0 — 27).

(c) Evaluate the validity of the uniform temperature assumption. Provide your reasoning.
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(d) If your answer in (c) is valid, stop here and proceed to other problems. If it is invalid,
determine the temperature at the surface of the sphere at £ =21.

e



ME 315 Exam 1
BASIC EQUATION SHEET

Conservation Laws

Control Volume Energy Balance: £, —E,, +E,, =E,; E,=mC, d%t ; B =4V
Surface Energy Balance: £, - E,_ =0

Conduction

. 0 " orT 5
FOlll'iel"S Law: gcond 5 = —k—-\_T' ; qcarzd n = _k_ ; qcand = Qc‘andA
» dx ,

on
Heat Diffusion Equation:

Cartesian Coordinates:i(k g—] +i(k—égj +i(k sz +g=pC L

w\ Ox/) oy\ &y ) az\ &z ? ot
Cylindrical Coordinates:li[kr?-z)+—lf—a— kg +ﬁ[k£J+ j=pC L
ror\ or) r og\ o) oz\| oz P or

Spherical Coordinates:
izi(krza—T}r UV - —a—[ksingg]ﬂj:pc L
re or or) rsin"6 og\ 08¢ ) r*sind 08 o0 b

Thermal Resistance:

In :
Conduction Resistance: Plane wall: R, = —L—; Cylindrical shell: R, = —(w;
’ kA : 2nlk

tcond 477](

Convection Resistance: R , =
e h A4

Spherical shell: R, ., = (1/?") _ (l/ro)

Radiation Resistance: R,

Jrad h
Thermal Energy Generation:

Plane wall with uniform energy generation, given temperature T at both surfaces, width =
2L, and x=0 at the center of the wall:

712 x4
T(x) = Ts = q?,i{_(l - L—z)

General solution for plane wall with uniform energy generation:

. 2
qx
T(x)z——é-k—+C1x+C2



Cylinder with uniform energy generation, surface temperature 7s:

qro 1
e 4k (1 _Tﬁ)

General solution for a cylindrical shell, with uniform heat generation:

q
T(r)= —Erz +C; Inr +C;

Extended Surfaces/Fins:

0(x) _ cosh| m(L~x) ]+ (hfmk)sinh[ m(L—x)]
6, cosh (mL)+(h/mk)sinh (mL)

_ vz, sinh(mL)+(h/mk)cosh(mL)

= (PEL) ™6, cosh (mL)+(h/mk)sinh (mL)

Adiabatic Tip: ggg:) = COS:OE:((i;)x)]

6(x) _(6,/6,)sinh (mx) +sinh[m(L—x) ]
A sinh (mL)

w2 , cosh(mL)—(6,/6,)
(thA ) % sinh (mL)

Convective Tip:

172

; 44, =(hPkA,) " 6, tanh (mL)

Prescribed Tip Temperature:

Infinitely Long Fin: ( ) : 4, = (hPRA, )”2 6,

where m?®

hP
= kA 2 gb = I;) _Tuo ) gﬁn = qcorw,ﬁnsm;face + gconv,u‘p; Qcanv,np = hAch
<
e’ —e™* e’ +e™” sinh x
; coshx= ; tanh x =

sinhx =
cosh x
q fin _ ‘Rr,canv—base

Fin Effectiveness: £, = YT € fm R
¢,b™'b 1,cond—fin

Qﬁn

fin'b

tanh (mL)

Fin Efficiency: 7, = ; for adiabatic tip, 77,, = ; an extended length of a

. T tanh (mL
fin using adiabatic tip L, = L+ .3 S M = M
V4 mL

¢
Fin array:

g!o{al' NAﬁ” 1 1
=l 1_;7 i ) Rl cond— fin — ; R cond— finarray —
hA 9 Arora[ ( g ) ot WﬁnhAﬁn oot g noMoral

toral

770:



Two Dimensional Steady Conduction:

1

Conduction Shape Factor: R, ., ﬁ
Finite Volume Method: For uniform mesh, interior point, no energy generation, steady state,

I;+1J i=] 1_;+T_,l+1+1:}—1 41;,;'
Transient Conduction:

3 2 = Rr—cona' h vI’c
Lumped Capacitance Analysis: Bi = =_fom ¢,
{—conv sofid

GOHV .i'

=exp|: [ M)[ ﬂ exp| —(Bi)(Fo) |

Thermal diffusivity a =

= Ve,
g = T Tw =exp [—“r—J > T, = £ C:,salide,mnv

|

pCp
To use Bi to estimate the approximation of the Lumped Capacitance Method, for plane
slab, Lc = L; for cylinder, Lc = ro/2; for sphere, Le=ro/3.

Analytical Solutions for Transient Conduction with Spatial Effect:

@ T=1, .+ = ¥
6* =—; ¥ =— { 3 C V T T
g -2 & n L2 Q,=pCY(L-T.)
< hL
Plane Wall: 6" =C| exp( & Fo)cos(.{]l ) = =? Bi= -
Center temperature at x=0: 8, = C, exp (—g’ 5 o) : Og =1-6 sméé’l)
=0 1

Long Cylinder: 8" =C, exp (—;'leo)JO (é’lr‘ ) ; Fo=t* :a_i ; Bi= h;a

g=1—29: Jl (gl)

0 1

Center temperature at » =0: 6, = C, exp (—é’ fFo) :

Sphere: 8" = C, exp( & Fo) Smégé: ) : Fo=r* =i§, Bi= h;a
1 o
, [Sin(é’i)—é’] Cos(gl)]

Center temperature at 7 =0: @, = C, exp (—( fFo) : Qg =1-36, 7
0 1

Jo(x) and Ji(x) are the 0™ and 1% order Bessel functions of the first kind and their values
will be provided, if needed.



; 3 o ; _x d'T dr
Semi-Infinite Solid: Similarity variable 7 = \/4— i —= ~277

Constant Surface Temperature (7%): M ( ] ( ) ( )

I,
Constant Surface Heat Flux (g, ): T(x,t)=7, = 2qo
fc 4051
i oT
Surface Convection (—ka— = h[Tm =T (O,t)] ¥
29 x=0
T(x,1)— x hx  Rat x  hfar
FEY~b —| exp| —+—— ||| erfc +—
T f(\/rlat) [ p(k x )\ Tk
Convection

Newton’s Law of Cooling: q_,,, =%, (T. =T.); q.0n, = o4

Radiation
Emissive power = E = goT}'

Irradiation received by surface from large surroundings: G = ¢T*

Surr

Irradiation absorbed by surface: aG
Irradiation reflected by surface: pG
Gray surface: &=a.
Opaque surface: o+ p =1
Radiative heat flux from a gray surface at Ts to a large surroundings at Tsu:
g =60 (T} =T, ) =h oy (T, T, )

Surr surr

hea =60 (T2 +T2,)(T, +17,,,)

surr s surr

Useful Constants

W
m?K*

o = Stefan-Boltzmann’s Constant = 5.67x107°

Geometry
Cylinder: A =27z#l; V = nr’l

Sphere: A =47zr*; V =§7zr3
Triangle: A= bh/2  b: base h: height

(=)



Taere 5.8 Coefticients nsed in the one-term approximation to the series
-nlutm:h iul ll.m-l--ut nm»—dnm 11~1u11.ll e umhu tmn

P]ane “"lll lnﬂmte ( \]inde Sphere

§1 l;1 &
B {l .ui) [ ¢ (rad) ' & {rad) e
04 i1, ﬁ‘)'-“ Logls 01412 LS thLTa0 LO3aE0
002 L1410 10633 0.1995 L0050 12445 L
0.03 05723 L0049 0.2440 LonTs 3,200] L3S0
WRIE] L1987 10064 02514 [N 3450 LOE20
0.05 02218 10682 03143 10124 L3854 L.OE 4
0.06 (1.2425 10098 .3438 10148 g4217 LOr7e
0o 126135 10114 0370 14173 4551 L2
0.08 1.2791 L1530 03060 | Q7 {1 4J G [.023%
000 0.2956 10745 04198 10222 hLSE50 10268
Q.11 93111 L0lal 04417 10246 5423 10298
15 {1.377¢ LO237 05376 1.H3Gs 16609 10445
020 {14328 L3ty G610 1.0483 11,7593 1.0a3a2
Q25 11,4801 L0382 0.6850 LSO 0.8447 17 a7
i3 3 05218 [ 0450 0.746% Lo712 HO208 10880
0 0.5932 [ Os80 8516 10932 10528 1.1Eed
0.5 0.6533 L0701 09408 1.1143 1.1656 1.1441
0.6 0.705] [Os14 10184 1.1345 1.2644 1.1713
0.7 7506 Logle 10873 115839 13525 1.1978
0.8 0,793¢ L3616 b 1494 11724 14320 1.2236
kY .3374 15107 [.20:48 [.1a02 15044 12488
1.0 11,8603 1. 1194 b.2558 12071 1.5708 1.2732
20 10769 L1788 [.5004 1.3384 20288 14763
LR U 1.E925 121 L7887 14191 2088y L.a227
4.0 1.2646 12287 L9081 L4698 245506 17202
R} 13138 [ 2302 IR L5026 25704 1.7870
XL 1.3496 [.2479 20490 15253 26557 18338
EEL 1.3766 L2332 20037 1.5411 2.7igs 1.8673
X 13978 [.237%0 21286 1.53526 1.7654 18920
RO 14149 1.2598 21566 15611 28044 1.9E06
104 1.4289 1. 2620 2. 1795 15677 28363 19l4n
200 1.4961 1.2699 22881 [.53919 29857 1.9751
300 1.5202 [.2717 23261 1.5973 20572 19398
44 1.5324 1.2723 2.34358 1,393 A06432 1.9942
500 L3400 12727 23572 L6002 30738 1.9962
16540 1.5552 2738 238090 1 .a01s 3L 1,990
% 15708 1‘2 35 2403 1 G018 3415

2 nur o

"B = Jr.l'. r'; for the ]J-lqu.. “131 1]]:[ Il.J A .r'; for the m.hmlr: \.\lsml-*u and 5];]1:1'.. S:: quw 5.6.



