Prob 1

For inner rod: $T(r)=\frac{q^{\prime} r_{0}^{2}}{4 k}\left(1-\frac{r^{2}}{r_{0}^{2}}\right)$

$$
q^{\prime \prime}=-k \frac{\partial T}{\partial r}=\frac{k q \cdot 2 r}{4 k}=\frac{k i r}{2 k_{0}} \text { linear. }
$$

In the two layers: $\quad T(r)=-\frac{g}{4 k} r^{2}+c_{1} \ln r+c_{2}$

$$
q^{\prime \prime}=-k \frac{\partial T}{\partial r}=-k \frac{c_{1}}{r} \quad \propto \frac{1}{r}
$$

key features:
T : at $r=0, \quad d T / d r=0$
at $r=r_{0},-\left.\frac{d i}{d r}\right|_{-}>-\left.\frac{d T}{d r}\right|_{+}$
at $r=r_{1},-\left.\frac{d T}{d r}\right|_{,}>-\left.\frac{d T}{d r}\right|_{+}$
at $r=r_{1}$, there is a temperature drop
$q^{\prime \prime}$: Linear in rod $\frac{1}{r}$ in two layers.

Given the symmetry in the
Prob 2 problem, we find neat

(1) Fin: $\frac{\theta(x)}{\theta_{b}}=\frac{\cosh \left[m\left(\frac{L}{2}-x\right)\right]}{\cosh (m L / 2)} \Rightarrow T_{6}=76.4^{\circ} \mathrm{c}$ at $x=0: \quad q_{b}=b_{\text {contact }}=b_{f m}$

$$
\begin{aligned}
& q_{b}=\dot{q} \forall=q_{\text {fin }}=\sqrt{h P k A_{c}} \theta_{b} \tanh \left(m-\frac{L}{L}\right) \\
& \Rightarrow \dot{q}=1.09 \times 10^{6} \mathrm{~W} / \mathrm{m}^{3} \\
& \text { (B) } q_{\text {contact }}^{\prime \prime}=\frac{T_{\text {min Al }}-T_{\text {max }, \mathrm{Pb}}}{t_{\text {contact }}^{\prime \prime}}=\frac{T_{\text {min, Al }}-76.4^{\circ} \mathrm{C}}{2 \times 10^{-4} \frac{\mathrm{~m}^{2} \mathrm{~K}}{\mathrm{~W}}} \\
& \Rightarrow T_{\text {min }} \mathrm{Al}=87.3^{\circ} \mathrm{C}
\end{aligned}
$$

(3) In Al rod, $T(x)=-\frac{\grave{b} x^{2}}{2 k}+c_{1} x+C_{2}$
$B(s) T(x=0)=87.3 C$ and $\left.\frac{d T}{d x}\right|_{x=-0.05 m}=0$
Thews, C_{1} and C_{2} can be determined.

$$
T_{\max , A l}=T(x=-0.05 \mathrm{~m})=92.9^{\circ} \mathrm{C}
$$

Prob. 3.

$T(x, y)$ given

$$
=100\left(x^{2}+y^{2}\right)+500 k
$$

(1) $P_{a b}=-\left.k \frac{\partial T}{\partial y}\right|_{y=0}(\Delta x \cdot 1)=0 \mathrm{~W}$
(3) $f_{b c}=-\left.k \frac{\partial T}{\partial x}\right|_{x=1}(\Delta y \cdot 1)=-200 w$
(3) Evergy balcance

$$
\begin{aligned}
& \rho c \frac{\partial t}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}+k \frac{\partial^{2} T}{\partial y^{2}}+k \frac{\partial^{2} T}{\partial z^{2}}+b^{\prime \prime \prime} \\
& f^{\prime \prime \prime}=-k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)=-400 \mathrm{~W} / \mathrm{m}^{3}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \dot{E}_{S T}=\dot{E}_{\text {in }}-\bar{E}_{\text {oux }}+\dot{E}_{S} \\
& 0=b_{a b}-b_{b c}-b_{a c}+\hat{b}^{(c)} \forall \\
& f_{a c}=0 \mathrm{~W}
\end{aligned}
$$

Also considering symmetry in Temp puofile, you can get $b_{a b}=b_{a c}=0 W$ aectomatizally.

Prob. 4.
Assumptions: neglect radiation, lumped capacitance method to be evaluated.
a) Grape:

$$
\begin{aligned}
& \dot{B}_{i}=\frac{h L C}{k}=0.0083<0.1, u \sin J(. C M . \\
& t=-\frac{e C_{p} V}{h A_{s}} \ln \frac{\theta}{\theta i}=\cdots=2575(\mathrm{~s})
\end{aligned}
$$

[If using analytiod solution, $B i=0.025$

$$
\begin{aligned}
& 3_{1}=0.2718, \quad C_{1}=110075 \\
& t=-\frac{r^{2}}{3^{2}} \frac{e c_{p}}{k} \ln \frac{\theta_{0}^{*}}{C_{1}}=2026(5), 2 \%
\end{aligned}
$$

b) Watermelon:

$$
B_{i}=\frac{h k}{k}=0.267>0.1 \text {. So using analesticul sol }
$$

To abe Table 5.1, $\quad B_{i}=\frac{h r}{k}=0.8$
From Table $5-1, \xi_{1}=1.4320, C_{1}=1.2236$

$$
t=-\frac{r^{2}}{3^{2}} \frac{P c_{1}}{k} \ln \frac{\theta_{0}^{*}}{c_{1}}=47484(\mathrm{~s})
$$

[Using bic. m will produce $t=36051$ (s), a 32% error $]$

