ME 315
Exam 1 Solutions
8:00 -9:00 PM
Tuesday, February 10, 2009

1. (25 points) Consider a composite slab composed of a layer of plastic bonded to a layer of
copper. The thickness of the plastic layer is /5 mm while that of the copper layer is 10 mm. The
cross-sectional area of the slab is 700 ¢m’. There is contact resistance at the plastic-Cu interface
due to the bonding. During testing, the plastic side is subjected to a hot fluid stream at 7., = 400
K and a heat transfer coefficient of 200 W/m’K. The copper side is subjected to surrounding air at
temperature 7., = 300 K, with a heat transfer coefficient of 100 W/m’K .

You are also given the following data:
Thermal contact conductance at plastic-Cu interface = 420 W/m’K.
kptasiic = 2 W/mK; ke, =400 W/mK

(a) Draw a thermal circuit for the composite showing all relevant thermal resistances and their
numerical values.
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(b) What is the drop in temperature across the plastic-Cu interface in K (i.e. the temperature
drop across the contact resistance)?
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2. (35 Points) A very long circular rod of 0.0/m diameter and thermal conductivity k£ = 4 W/mK
is placed in a large enclosure. A small portion of the rod (0 <x <L) is perfectly insulated and
experiences uniform heat generation, ¢ = 3x10* W/m®. The rod loses heat by convection and
radiation, as shown. The rod has a gray surface with emissivity ¢ = 0.5 and is located in
surroundings at T}, =300K. The convective heat transfer coefficient is /=10 W/m’K, and the
environment temperature is also 300K.
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(i) Determine the heat flux ¢ at x=L in W/m".
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(i) Find the effective heat transfer coefficient /.., in W/m’K. Evaluate it at an approximate
surface temperature 7, = 400 K You may use this quantity in the analysis for part (iii).
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(iii) Find the temperature T}, at x=L in °K.
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(iv) Find the fin effectiveness &.
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3. (40 Points) Consider steady 1D heat conduction in the trapezoidal domain shown below. The
domain extends infinitely into the page. There is a constant volumetric heat generation rate ¢ in

the domain.

Insulation
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infinitely into the page

The half-width of the domain at x=0 is a, and that at x=L is b as shown. The temperature at x=0
is Ty, while that at x=L is 7;. The thermal conductivity of the material is £ and may be assumed
constant.

(i) Consider an infinitesimal control volume of extent dx as shown. Write an energy balance
for the control volume to develop a differential equation for the heat transfer rate g.(x) .
State all assumptions clearly.
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(i) Now, using Fourier’s law, develop a differential equation for the temperature 7(x).
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(iii) Write down the boundary conditions necessary to solve the T(x) differential equation.
DO NOT SOLVE THE EQUATION.
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