ME 315
 Exam 1 Solutions
 8:00-9:00 PM
 Tuesday, February 10, 2009

1. (25 points) Consider a composite slab composed of a layer of plastic bonded to a layer of copper. The thickness of the plastic layer is 15 mm while that of the copper layer is 10 mm . The cross-sectional area of the slab is $100 \mathrm{~cm}^{2}$. There is contact resistance at the plastic-Cu interface due to the bonding. During testing, the plastic side is subjected to a hot fluid stream at $T_{\infty l}=400$ K and a heat transfer coefficient of $200 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The copper side is subjected to surrounding air at temperature $T_{\infty 2}=300 \mathrm{~K}$, with a heat transfer coefficient of $100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

You are also given the following data:
Thermal contact conductance at plastic-Cu interface $=420 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
$k_{\text {plastic }}=2 \mathrm{~W} / \mathrm{mK} ; \quad k_{c u}=400 \mathrm{~W} / \mathrm{mK}$
(a) Draw a thermal circuit for the composite showing all relevant thermal resistances and their numerical values.

Solution

$$
L_{C u}=t_{C u}=10 \mathrm{~mm}=0.010 \mathrm{~m}
$$

$$
A_{c}=100 \mathrm{~cm}^{2} \frac{(1 \mathrm{~m})^{2}}{(100 \mathrm{~cm})^{2}}=0.01 \mathrm{~m}^{2}
$$

$$
\therefore R_{\text {conv }, 1}=\frac{1}{h_{1} A}=\frac{1}{\left(200 W / m^{2} K\right)\left(0.01 m^{2}\right)}=0.5 K / W
$$

$$
R_{\text {cond }, P}=\frac{L_{P}}{k_{P} A}=\frac{0.015 m}{(2 W / m K)\left(0.01 m^{2}\right)}=0.75 \mathrm{~K} / \mathrm{W}
$$

$$
\begin{aligned}
& R_{\text {contact }}=\frac{1}{k_{\text {contact }} A}=\frac{1}{\left(420 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\right)\left(0.01 \mathrm{~m}^{2}\right)}=0.2381 \mathrm{~K} / \mathrm{W} \\
& R_{\text {cond }, \mathrm{Cu}}=\frac{L_{C u}}{k_{C u} A}=\frac{0.010 \mathrm{~m}}{(400 \mathrm{~W} / \mathrm{mK})\left(0.01 \mathrm{~m}^{2}\right)}=0.0025 \mathrm{~K} / \mathrm{W} \\
& R_{\text {conv }, 2}=\frac{1}{h_{2} A}=\frac{1}{\left(100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\right)\left(0.01 \mathrm{~m}^{2}\right)}=0.1 \mathrm{~K} / \mathrm{W}
\end{aligned}
$$

(b) What is the drop in temperature across the plastic- Cu interface in K (i.e. the temperature drop across the contact resistance)?

Solution

$$
\begin{aligned}
& R_{\text {tot }}=0.5+0.75+0.2381+0.0025+0.1 \\
& \quad=1.5906 \mathrm{~K} / \mathrm{W} \\
& q=\frac{T_{\infty, 1}-T_{\infty, 2}}{R_{\text {tot }}}=\frac{400-300}{1.5906}=62.8 \mathrm{~W} \\
& \begin{aligned}
& \Delta T_{\text {interface }}= \\
& \text { contact }
\end{aligned} \\
& \quad=0.2381 \cdot 62.8=14.95268 \mathrm{~K}
\end{aligned}
$$

2. (35 Points) A very long circular rod of 0.01 m diameter and thermal conductivity $k=4 \mathrm{~W} / \mathrm{mK}$ is placed in a large enclosure. A small portion of the rod $(0 \leq x \leq L)$ is perfectly insulated and experiences uniform heat generation, $\dot{q}=3 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3}$. The rod loses heat by convection and radiation, as shown. The rod has a gray surface with emissivity $\varepsilon=0.5$ and is located in surroundings at $T_{\text {surr }}=300 \mathrm{~K}$. The convective heat transfer coefficient is $h=10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, and the environment temperature is also 300 K .

(i) Determine the heat flux $q^{\prime \prime}{ }_{b}$ at $x=L$ in W / m^{2}.

Solution

$$
\begin{aligned}
& \dot{q} \cdot V=\left(3 \times 10^{4} \mathrm{~W} / \mathrm{m}^{2}\right) \cdot \frac{\pi D^{2}}{4} \cdot L \\
&=\left(3 \times 10^{4} \mathrm{~W} / \mathrm{m}^{2}\right) \cdot \frac{\pi(0.01 \mathrm{~m})^{2}}{4} \cdot(1 \mathrm{~m})=2.3562 \mathrm{~W} \\
&=q \\
& \dot{E}_{\text {in }}-\dot{E}_{\text {out }}+\dot{E}_{\text {gen }}=\dot{E}_{\text {st }} \rightarrow \therefore \dot{E}_{\text {gen }}=\dot{E}_{\text {out }} \\
& \therefore q_{b}^{\prime \prime}=\frac{q}{A}=\frac{q}{\frac{\pi D^{2}}{4}}=\frac{2.3562 \mathrm{~W}}{\frac{\pi(0.01 \mathrm{~m})^{2}}{4}}=3 \times 10^{4} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

(ii) Find the effective heat transfer coefficient $h_{\text {rad }}$ in $W / m^{2} K$. Evaluate it at an approximate surface temperature $T_{s}=400 \mathrm{~K}$. You may use this quantity in the analysis for part (iii).

Solution

$$
\begin{aligned}
& h_{r a d}=\varepsilon \cdot \sigma \cdot\left(T_{s}+T_{\text {Surr }}\right) \cdot\left(T_{s}^{2}+T_{\text {suur }}^{2}\right) \\
& T_{s}=400 \mathrm{~K} \\
& T_{\text {surr }}=T_{\infty}=300 \mathrm{~K} \quad \varepsilon=0.5 \\
& \therefore h_{r a d}=(0.5) \cdot\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}\right) \cdot(400+300) \mathrm{K} \cdot\left(400^{2}+300^{2}\right) \mathrm{K}^{2} \\
& \quad=4.96125 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{aligned}
$$

(iii) Find the temperature T_{b} at $x=L$ in ${ }^{\circ} K$.

Solution
Infinite fin $q_{f}=M=\sqrt{h_{t o t} P k A_{c}}\left(T_{b}-T_{\infty}\right) ; h_{t o t}=h_{r a d}+h_{c o n v}$

$$
\begin{aligned}
& \dot{q} \cdot V=q_{t} \\
& \dot{q} \cdot A_{c} \cdot L=\sqrt{h_{t o t} P k A_{c}}\left(T_{b}-T_{\infty}\right) \\
& \therefore T_{b}-T_{\infty}=\frac{1}{\sqrt{h_{\text {tot }} P k A_{c}}} \cdot \dot{q} \cdot A_{c} \cdot L \\
& \Rightarrow T_{b}=T_{\infty}+\frac{1}{\sqrt{h_{\text {tot }} P k A_{c}}} \cdot \dot{q} \cdot A_{c} \cdot L \\
& A_{c}=\frac{\pi D^{2}}{4}=0.000079 m^{2} \quad P=\pi D=0.031416 m \\
& \therefore T_{b}=300 K+\frac{3 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3} \cdot\left(0.000079 m^{2}\right) \cdot 1 m}{\sqrt{(10+4.96125) W / m^{2} K \cdot(0.031416 m) \cdot(4 W / m K) \cdot\left(0.000079 m^{2}\right)}} \\
& \quad=300 \mathrm{~K}+\frac{2.37 \mathrm{~W}}{0.012187 W / K}=494.47 \mathrm{~K}
\end{aligned}
$$

(iv) Find the fin effectiveness ε_{f}.

Solution

$$
\begin{aligned}
& \varepsilon_{f}=\frac{q_{t i n}}{h_{\text {tot }} \cdot A_{c, b} \cdot \theta_{b}}=\frac{\sqrt{h_{t o t} P k A_{c}} \theta_{b}}{h_{\text {tot }} \cdot A_{c} \cdot \theta_{b}}=\frac{\sqrt{P k}}{\sqrt{h_{\text {tot }} \cdot A_{c}}} \\
& =\frac{\sqrt{(0.031416 \mathrm{~m}) \cdot(4 \mathrm{~W} / \mathrm{mK})}}{\sqrt{\left(14.96125 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\right) \cdot\left(0.000079 \mathrm{~m}^{2}\right)}}=10.31
\end{aligned}
$$

3. (40 Points) Consider steady 1D heat conduction in the trapezoidal domain shown below. The domain extends infinitely into the page. There is a constant volumetric heat generation rate \dot{q} in the domain.

The half-width of the domain at $x=0$ is a, and that at $x=L$ is b as shown. The temperature at $x=0$ is T_{0}, while that at $x=L$ is T_{L}. The thermal conductivity of the material is k and may be assumed constant.
(i) Consider an infinitesimal control volume of extent $d x$ as shown. Write an energy balance for the control volume to develop a differential equation for the heat transfer rate $q_{x}(x)$. State all assumptions clearly.

Solution

$$
\begin{aligned}
& R=\frac{b-a}{L} x+a \\
& q_{x} \longrightarrow \left\lvert\, \begin{array}{l}
\dot{q}
\end{array} \longrightarrow q_{x+d x} \quad A(x)=2\left(a+\frac{b-a}{L} x\right)\right. \\
& \frac{d A(x)}{d x}=\frac{2(b-a)}{L} \\
& \stackrel{\leftrightarrow}{d x} \\
& \dot{E}_{\text {in }}-\dot{E}_{\text {out }}+\dot{E}_{\text {gen }}=\dot{E}_{\text {st }} \\
& \dot{E}_{\text {in }}=q_{x} \\
& \dot{E}_{\text {out }}=q_{x}+\frac{d q_{x}}{d x} d x
\end{aligned}
$$

$$
\begin{aligned}
& \dot{E}_{\text {gen }}=\dot{q} A(x) d x \\
& q_{x}-q_{x}-\frac{d q_{x}}{d x} d x+\dot{q} A(x) d x=0 \\
& -\frac{d q_{x}}{d x}+\dot{q} A(x)=0
\end{aligned}
$$

(ii) Now, using Fourier's law, develop a differential equation for the temperature $T(x)$.

Solution

$$
\begin{aligned}
& q_{x}=-k \frac{d T}{d x} \cdot A(x) \\
& \therefore \frac{d}{d x}\left(-k \frac{d T}{d x} \cdot A(x)\right)=\dot{q} A(x) \\
&-k \frac{d}{d x}\left[\frac{d T}{d x} \cdot A(x)\right]=-k\left[\frac{d^{2} T}{d x} \cdot A(x)+\frac{d T}{d x} \cdot \frac{d A(x)}{d x}\right] \\
& \therefore \frac{d^{2} T}{d x} \cdot A(x)+\frac{d T}{d x} \cdot \frac{d A(x)}{d x}=-\frac{\dot{q}}{k} A(x) \\
& A(x) \frac{d^{2} T}{d x^{2}}+\frac{d A(x)}{d x} \frac{d T}{d x}=-\frac{\dot{q}}{k} A(x) \\
& 2\left(a+\frac{b-a}{L} x\right) \frac{d^{2} T}{d x^{2}}+2\left(\frac{b-a}{L}\right) \frac{d T}{d x}+2\left(a+\frac{b-a}{L} x\right) \frac{\dot{q}}{k}=0
\end{aligned}
$$

(iii) Write down the boundary conditions necessary to solve the $T(x)$ differential equation. DO NOT SOLVE THE EQUATION.

Solution

$$
\begin{aligned}
& T(x=0)=T_{0} \\
& T(x=L)=T_{L}
\end{aligned}
$$

