ME 315
 Exam 1
 8:00-9:00 PM
 Tuesday, February 10, 2009

- This is a closed-book, closed-notes examination. There is a formula sheet at the back.
- You must turn off all communications devices before starting this exam, and leave them off for the entire exam.
- Please write legibly and show all work for your own benefit. Please show your final answers in the boxes provided.
- State all assumptions.
- Please arrange all your sheets in the correct order. Make sure they are all included.

Name: \qquad
Last
First

CIRCLE YOUR DIVISION

Div. 1 (9:30 am)

Prof. Murthy
Div. 2 (12:30 pm)

Prof. Choi

Problem	Score
$\mathbf{1}$	
(25 Points)	
2	
(35 Points)	
3	
(40 Points)	
Total	
(100 Points)	

1. (25 points) Consider a composite slab composed of a layer of plastic bonded to a layer of copper. The thickness of the plastic layer is 15 mm while that of the copper layer is 10 mm . The cross-sectional area of the slab is $100 \mathrm{~cm}^{2}$. There is contact resistance at the plastic-Cu interface due to the bonding. During testing, the plastic side is subjected to a hot fluid stream at $T_{\infty l}=400$ K and a heat transfer coefficient of $200 \mathrm{~W} / \mathrm{m}^{2} K$. The copper side is subjected to surrounding air at temperature $T_{\infty 2}=300 \mathrm{~K}$, with a heat transfer coefficient of $100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

You are also given the following data:
Thermal contact conductance at plastic-Cu interface $=420 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
$k_{\text {plastic }}=2 \mathrm{~W} / \mathrm{mK} ; \quad k_{c u}=400 \mathrm{~W} / \mathrm{mK}$
(a) Draw a thermal circuit for the composite showing all relevant thermal resistances and their numerical values.
$\mathrm{T}_{\infty 1}$
$\mathrm{T}_{\infty 2}$
(b) What is the drop in temperature across the plastic-Cu interface in K (i.e. the temperature drop across the contact resistance)?
2. (35 Points) A very long circular rod of 0.01 m diameter and thermal conductivity $k=4 \mathrm{~W} / \mathrm{mK}$ is placed in a large enclosure. A small portion of the rod $(0 \leq x \leq L)$ is perfectly insulated and experiences uniform heat generation, $\dot{q}=3 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3}$. The rod loses heat by convection and radiation, as shown. The rod has a gray surface with emissivity $\varepsilon=0.5$ and is located in surroundings at $T_{\text {surr }}=300 \mathrm{~K}$. The convective heat transfer coefficient is $h=10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, and the environment temperature is also 300 K .

(i) Determine the heat flux $q{ }^{\prime \prime}{ }_{b}$ at $x=L$ in W / m^{2}.
(ii) Find the effective heat transfer coefficient $h_{\text {rad }}$ in $W / m^{2} K$. Evaluate it at an approximate surface temperature $T_{s}=400 \mathrm{~K}$. You may use this quantity in the analysis for part (iii).
(iii) Find the temperature T_{b} at $x=L$ in ${ }^{\circ} K$.
(iv) Find the fin effectiveness ε_{f}.
3. (40 Points) Consider steady 1D heat conduction in the trapezoidal domain shown below. The domain extends infinitely into the page. There is a constant volumetric heat generation rate \dot{q} in the domain.

The half-width of the domain at $x=0$ is a, and that at $x=L$ is b as shown. The temperature at $x=0$ is T_{0}, while that at $x=L$ is T_{L}. The thermal conductivity of the material is k and may be assumed constant.
(i) Consider an infinitesimal control volume of extent $d x$ as shown. Write an energy balance for the control volume to develop a differential equation for the heat transfer rate $q_{x}(x)$. State all assumptions clearly.
\square
(ii) Now, using Fourier’s law, develop a differential equation for the temperature $T(x)$.
\square
(iii) Write down the boundary conditions necessary to solve the $T(x)$ differential equation. DO NOT SOLVE THE EQUATION.

BASIC EQUATION SHEET

Conservation Laws

Control Volume Energy Balance: $\dot{E_{\text {in }}}-\dot{E_{\text {out }}}+\dot{E_{\text {gen }}}=\dot{E_{s t}} ; \dot{E_{s t}}=m C_{p} d T / d t ; \dot{E_{g e n}}=\dot{q} V$
Surface Energy Balance: $\dot{E_{\text {in }}}-\dot{E_{\text {out }}}=0$

Conduction

Fourier's Law: $q_{c o n d, x}^{\prime \prime}=-k \frac{\partial T}{\partial x} ; q_{c o n d, n}^{\prime \prime}=-k \frac{\partial T}{\partial n} ; q_{c o n d}=q_{c o n d}^{\prime \prime} A$
Heat Flux Vector: $\overrightarrow{q^{\prime}}=q_{x} \vec{i}+q_{y} \vec{j} \vec{j}+q_{z} \vec{k}=-k\left[\frac{\partial T}{\partial x} \vec{i}+\frac{\partial T}{\partial y} \vec{j}+\frac{\partial T}{\partial z} \vec{k}\right]$
Heat Diffusion Equation:
Rectangular Coordinates: $\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{q}=\rho C_{p} \frac{\partial T}{\partial t}$
Cylindrical Coordinates: $\frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \phi}\left(k \frac{\partial T}{\partial \phi}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{q}=\rho C_{p} \frac{\partial T}{\partial t}$
Spherical Coordinates:
$\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(k r^{2} \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \phi}\left(k \frac{\partial T}{\partial \phi}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(k \sin \theta \frac{\partial T}{\partial \theta}\right)+\dot{q}=\rho C_{p} \frac{\partial T}{\partial t}$
Thermal Diffusivity: $\alpha=\frac{k}{\rho C_{p}}$
Thermal Resistance Concepts:
Conduction Resistance: $R_{t, \text { cond }} \stackrel{\text { plane wall }}{=} \frac{L}{k A} ; R_{t, \text { cond }} \stackrel{\text { cylinder }}{=} \frac{\ln \left(r_{o} / r_{i}\right)}{2 \pi l k} ; R_{t, \text { cond }} \stackrel{\text { sphere }}{=} \frac{\left(1 / r_{i}\right)-\left(1 / r_{o}\right)}{4 \pi k}$
Convection Resistance: $R_{t, \text { conv }} \stackrel{\text { planewall }}{=} \frac{1}{h_{\text {conv }} A} ; R_{t, \text { conv }} \stackrel{\text { cylinder }}{=} \frac{1}{2 \pi r l h_{c o n v}} ; R_{t, \text { conv }} \stackrel{\text { sphere }}{=} \frac{1}{4 \pi r^{2} h_{\text {conv }}}$
Radiation Resistance: $R_{t, \text { rad }} \stackrel{\text { planewall }}{=} \frac{1}{h_{r a d} A} ; R_{t, \text { rad }} \stackrel{\text { cylinder }}{=} \frac{1}{2 \pi r l h_{r a d}} ; R_{t, \text { rad }} \stackrel{\text { sphere }}{=} \frac{1}{4 \pi r^{2} h_{r a d}}$
Combined Convection and Radiation Surface: $\frac{1}{R_{\text {conv }+ \text { rad }}}=\frac{1}{R_{t, \text { conv }}}+\frac{1}{R_{t, \text { rad }}}$
Contact Resistance: $R_{t, \text { contact }}=\frac{1}{h_{\text {contact }} A_{\text {contact }}}$

Thermal Energy Generation: $T(x)-T_{s} \stackrel{\text { plane wall }}{=} \frac{\dot{q} L^{2}}{2 k}\left(1-\frac{x^{2}}{L^{2}}\right) ; \quad T(r)-T_{s} \stackrel{\text { cylinder }}{=} \frac{\dot{q} r_{o}^{2}}{4 k}\left(1-\frac{r^{2}}{r_{o}^{2}}\right)$

Extended Surfaces (fins with constant area of cross-section only):

$\theta=T-T_{\infty}$
Convective Tip: $\frac{\theta(x)}{\theta_{b}}=\frac{\cosh [m(L-x)]+(h / m k) \sinh [m(L-x)]}{\cosh (m L)+(h / m k) \sinh (m L)}$

$$
q_{f i n}=\left(h P k A_{c}\right)^{1 / 2} \theta_{b} \frac{\sinh (m L)+(h / m k) \cosh (m L)}{\cosh (m L)+(h / m k) \sinh (m L)}
$$

Adiabatic Tip: $\frac{\theta(x)}{\theta_{b}}=\frac{\cosh [m(L-x)]}{\cosh (m L)} ; q_{f i n}=\left(h P k A_{c}\right)^{1 / 2} \theta_{b} \tanh (m L)$
Prescribed Tip Temperature: $\frac{\theta(x)}{\theta_{b}}=\frac{\left(\theta_{L} / \theta_{b}\right) \sinh (m x)+\sinh [m(L-x)]}{\sinh (m L)}$

$$
q_{f i n}=\left(h P k A_{c}\right)^{1 / 2} \theta_{b} \frac{\cosh (m L)-\left(\theta_{L} / \theta_{b}\right)}{\sinh (m L)}
$$

Infinitely Long Fin: $\frac{\theta(x)}{\theta_{b}}=e^{-m x} ; q_{f i n}=\left(h P k A_{c}\right)^{1 / 2} \theta_{b}$

$$
m^{2}=\frac{h P}{k A_{c}} ; \quad \theta_{b}=T_{b}-T_{\infty} ; q_{\text {fin }}=q_{\text {conv, finsufface }}+q_{c o n v, t i p} ; q_{c o n v, t i p}=h A_{c} \theta_{L}
$$

Fin Effectiveness: $\varepsilon_{f i n}=\frac{q_{f i n}}{h A_{c, b} \theta_{b}} ; \varepsilon_{f i n}=\frac{R_{t, c o n v-\text { base }}}{R_{t, c o n d-f i n}}$
Fin Efficiency: $\eta_{f i n}=\frac{q_{f i n}}{h A_{f i n} \theta_{b}} ; \eta_{f i n} \stackrel{\text { adiabatic }}{=} \frac{\tanh (m L)}{m L} ; L_{c}=L+\frac{A_{c}}{P} ; \eta_{f i n}=\frac{\tanh \left(m L_{c}\right)}{m L_{c}}$

$$
\eta_{o}=\frac{q_{\text {total }}}{h A_{\text {total }} \theta_{b}}=1-\frac{N A_{\text {fin }}}{A_{\text {total }}}\left(1-\eta_{\text {fin }}\right) ; R_{t, \text { cond }- \text { fin }}=\frac{1}{\eta_{\text {fin }} h A_{\text {fin }}} ; R_{t, \text { cond }- \text { finarray }}=\frac{1}{\eta_{o} h A_{\text {total }}}
$$

Convection

Newton's Law of Cooling: $q_{c o n v}^{\prime \prime}=h_{c o n v}\left(T_{s}-T_{\infty}\right) ; q_{c o n v}=q_{c o n v}^{\prime \prime} A$

Radiation

Emissive power $=E=\varepsilon \sigma T_{s}^{4}$
Irradiation received by surface from large surroundings: $G=\sigma T_{\text {surr }}^{4}$
Irradiation absorbed by surface $=\alpha G$
Reflected irradiation: $\rho \mathrm{G}$
Gray surface: $\varepsilon=\alpha$
Opaque surface: $\alpha+\rho=1$
Radiative heat flux from a gray surface at T_{S} to a large surroundings at $\mathrm{T}_{\text {surr }}$:
$q_{r a d}^{\prime \prime}=\varepsilon \sigma\left(T_{s}^{4}-T_{\text {surr }}^{4}\right)=h_{\text {rad }}\left(T_{s}-T_{\text {surr }}\right)$
$h_{r a d}=\varepsilon \sigma\left(T_{s}^{2}+T_{\text {surr }}^{2}\right)\left(T_{s}+T_{\text {surr }}\right)$

Useful Constants

$\sigma=$ Stefan-Boltzmann's Constant $=5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}}$

Geometry

Cylinder: $A=2 \pi r l ; V=\pi r^{2} l$
Sphere: $A=4 \pi r^{2} ; V=\frac{4}{3} \pi r^{3}$

