ME 315 Exam 1 8:00 -9:00 PM Tuesday, February 10, 2009

- This is a closed-book, closed-notes examination. *There is a formula sheet at the back*.
- You must turn off all communications devices before starting this exam, and leave them off for the entire exam.
- Please write legibly and show all work for your own benefit. Please show your final answers in the boxes provided.
- State all assumptions.
- Please arrange all your sheets in the correct order. Make sure they are all included.

Name: _____

Last

First

CIRCLE YOUR DIVISION

Div. 1 (9:30 am) Prof. Murthy Div. 2 (12:30 pm) Prof. Choi

Problem	Score
1	
(25 Points)	
2	
(35 Points)	
3	
(40 Points)	
Total	
(100 Points)	

1. (25 points) Consider a composite slab composed of a layer of plastic bonded to a layer of copper. The thickness of the plastic layer is 15 mm while that of the copper layer is 10 mm. The cross-sectional area of the slab is 100 cm^2 . There is contact resistance at the plastic-Cu interface due to the bonding. During testing, the plastic side is subjected to a hot fluid stream at $T_{\infty l} = 400$ K and a heat transfer coefficient of $200 \text{ W/m}^2 K$. The copper side is subjected to surrounding air at temperature $T_{\infty 2} = 300 \text{ K}$, with a heat transfer coefficient of $100 \text{ W/m}^2 K$.

You are also given the following data: Thermal contact conductance at plastic-Cu interface = $420 \text{ W/m}^2 K$. $k_{plastic} = 2 \text{ W/m}K$; $k_{cu} = 400 \text{ W/m}K$

(a) Draw a thermal circuit for the composite showing all relevant thermal resistances and their numerical values.

 $T_{\infty 1}$

(b) What is the drop in temperature across the plastic-Cu interface in K (i.e. the temperature drop across the contact resistance)?

 $\Delta T_{interface} =$

Κ

 $T_{\infty 2}$

2. (35 Points) A very long circular rod of 0.01m diameter and thermal conductivity k = 4 W/mK is placed in a large enclosure. A small portion of the rod ($0 \le x \le L$) is perfectly insulated and experiences uniform heat generation, $\dot{q} = 3 \times 10^4 \text{ W/m}^3$. The rod loses heat by convection and radiation, as shown. The rod has a gray surface with emissivity $\varepsilon = 0.5$ and is located in surroundings at $T_{surr} = 300K$. The convective heat transfer coefficient is $h = 10 W/m^2K$, and the environment temperature is also 300K.

- (i) Determine the heat flux q''_b at x=L in W/m^2 .
- (ii) Find the effective heat transfer coefficient h_{rad} in $W/m^2 K$. Evaluate it at an approximate surface temperature $T_s = 400 K$. You may use this quantity in the analysis for part (iii).
- (iii) Find the temperature T_b at x=L in ${}^{\circ}K$.

(iv) Find the fin effectiveness ε_{f} .

3. (40 Points) Consider steady 1D heat conduction in the trapezoidal domain shown below. The domain extends infinitely into the page. There is a constant volumetric heat generation rate \dot{q} in the domain.

The half-width of the domain at x=0 is a, and that at x=L is b as shown. The temperature at x=0 is T_0 , while that at x=L is T_L . The thermal conductivity of the material is k and may be assumed constant.

- (i) Consider an infinitesimal control volume of extent dx as shown. Write an energy balance for the control volume to develop a differential equation for the heat transfer rate $q_x(x)$. State all assumptions clearly.
- (ii) Now, using Fourier's law, develop a differential equation for the temperature T(x).
- (iii) Write down the boundary conditions necessary to solve the T(x) differential equation. DO NOT SOLVE THE EQUATION.

BASIC EQUATION SHEET

Conservation Laws

Control Volume Energy Balance: $\vec{E}_{in} - \vec{E}_{out} + \vec{E}_{gen} = \vec{E}_{st}$; $\vec{E}_{st} = mC_p \frac{dT}{dt}$; $\vec{E}_{gen} = \vec{q}V$ Surface Energy Balance: $\vec{E}_{in} - \vec{E}_{out} = 0$

Conduction

Fourier's Law: $q_{cond,x}^{*} = -k \frac{\partial T}{\partial x}$; $q_{cond,n}^{*} = -k \frac{\partial T}{\partial n}$; $q_{cond} = q_{cond}^{*} A$ Heat Flux Vector: $\overline{q}^{*} = q_{x}^{*} \overline{i} + q_{y}^{*} \overline{j} + q_{z}^{*} \overline{k} = -k \left[\frac{\partial T}{\partial x} \overline{i} + \frac{\partial T}{\partial y} \overline{j} + \frac{\partial T}{\partial z} \overline{k} \right]$ Heat Diffusion Equation: Rectangular Coordinates: $\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \overline{q} = \rho C_{p} \frac{\partial T}{\partial t}$ Cylindrical Coordinates: $\frac{1}{r} \frac{\partial}{\partial r} \left(kr \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \overline{q} = \rho C_{p} \frac{\partial T}{\partial t}$ Spherical Coordinates: $\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(kr^{2} \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(k \sin \theta \frac{\partial T}{\partial \theta} \right) + \overline{q} = \rho C_{p} \frac{\partial T}{\partial t}$ Thermal Diffusivity: $\alpha = \frac{k}{\rho C_{p}}$ Thermal Resistance Concepts: Conduction Resistance: $R_{t,cond} \stackrel{plane wall}{=} \frac{L}{h_{cond}A}$; $R_{t,cond} \stackrel{cylinder}{=} \frac{\ln(r_{o}/r_{t})}{2\pi l k}$; $R_{t,cond} \stackrel{sphere}{=} \frac{1}{4\pi r^{2} h_{conv}}$ Radiation Resistance: $R_{t,rad} \stackrel{plane wall}{=} \frac{1}{h_{rad}A}$; $R_{t,rad} \stackrel{cylinder}{=} \frac{1}{2\pi r l h_{conv}}$; $R_{t,rad} \stackrel{sphere}{=} \frac{1}{4\pi r^{2} h_{rad}}$ Combined Convection and Radiation Surface: $\frac{1}{R_{conv+rad}} = \frac{1}{R_{t,conv}} + \frac{1}{R_{t,rad}}$

Thermal Energy Generation: $T(x) - T_s \stackrel{plane wall}{=} \frac{q L^2}{2k} \left(1 - \frac{x^2}{L^2}\right); \quad T(r) - T_s \stackrel{cylinder}{=} \frac{q r_o^2}{4k} \left(1 - \frac{r^2}{r_o^2}\right)$

Extended Surfaces (fins with constant area of cross-section only):

$$\begin{split} \theta &= T - T_{\infty} \\ \text{Convective Tip: } \frac{\theta(x)}{\theta_b} &= \frac{\cosh\left[m(L-x)\right] + (h/mk)\sinh\left[m(L-x)\right]}{\cosh(mL) + (h/mk)\sinh(mL)} \\ q_{fin} &= (hPkA_c)^{1/2} \theta_b \frac{\sinh(mL) + (h/mk)\cosh(mL)}{\cosh(mL) + (h/mk)\sinh(mL)} \\ \text{Adiabatic Tip: } \frac{\theta(x)}{\theta_b} &= \frac{\cosh\left[m(L-x)\right]}{\cosh(mL)}; \ q_{fin} &= (hPkA_c)^{1/2} \theta_b \tanh(mL) \\ \text{Adiabatic Tip: } \frac{\theta(x)}{\theta_b} &= \frac{\cosh\left[m(L-x)\right]}{\cosh(mL)}; \ q_{fin} &= (hPkA_c)^{1/2} \theta_b \tanh(mL) \\ \text{Prescribed Tip Temperature: } \frac{\theta(x)}{\theta_b} &= \frac{(\theta_L/\theta_b)\sinh(mx) + \sinh\left[m(L-x)\right]}{\sinh(mL)} \\ q_{fin} &= (hPkA_c)^{1/2} \theta_b \frac{\cosh(mL) - (\theta_L/\theta_b)}{\sinh(mL)} \\ \text{Infinitely Long Fin: } \frac{\theta(x)}{\theta_b} &= e^{-mx}; \ q_{fin} &= (hPkA_c)^{1/2} \theta_b \\ m^2 &= \frac{hP}{kA_c}; \ \theta_b &= T_b - T_{\infty}; \ q_{fin} &= q_{conv.finsurface} + q_{conv.tip}; \ q_{conv.tip} &= hA_c\theta_L \\ \text{Fin Effectiveness: } \mathcal{E}_{fin} &= \frac{q_{fin}}{hA_{c,b}\theta_b}; \ \mathcal{E}_{fin} &= \frac{R_{t.conv-base}}{R_{t.conv-base}} \\ \text{Fin Efficiency: } \eta_{fin} &= \frac{q_{fin}}{hA_{fin}\theta_b}; \ \eta_{fin} &= \frac{\tanh(mL)}{mL}; \ L_c &= L + \frac{A_c}{P}; \ \eta_{fin} &= \frac{\tanh(mL_c)}{mL_c} \\ \eta_o &= \frac{q_{total}}{hA_{total}\theta_b} = 1 - \frac{NA_{fin}}{A_{total}} \left(1 - \eta_{fin}\right); \ R_{t.cond-fin} &= \frac{1}{\eta_{fin}}hA_{fin}; \ R_{t.cond-finarray} &= \frac{1}{\eta_o hA_{total}} \end{split}$$

Convection

Newton's Law of Cooling: $\vec{q_{conv}} = h_{conv} \left(T_s - T_{\infty}\right); q_{conv} = \vec{q_{conv}}A$

Radiation

Emissive power = $E = \varepsilon \sigma T_s^4$

Irradiation received by surface from large surroundings: $G = \sigma T_{surr}^4$

Irradiation absorbed by surface = αG Reflected irradiation: ρG

Gray surface: $\varepsilon = \alpha$

Opaque surface: $\alpha + \rho = 1$

Radiative heat flux from a gray surface at T_s to a large surroundings at T_{surr}:

$$q_{rad}'' = \varepsilon \sigma \left(T_s^4 - T_{surr}^4 \right) = h_{rad} \left(T_s - T_{surr} \right)$$
$$h_{rad} = \varepsilon \sigma \left(T_s^2 + T_{surr}^2 \right) \left(T_s + T_{surr} \right)$$

Useful Constants

 σ = Stefan-Boltzmann's Constant = 5.67 × 10⁻⁸ $\frac{W}{m^2 K^4}$

<u>Geometry</u> Cylinder: $A = 2\pi rl$; $V = \pi r^2 l$ Sphere: $A = 4\pi r^2$; $V = \frac{4}{3}\pi r^3$