

- **1.** A heater is attached to the bottom of a compound plane (with regions A and B) with the top surface exposed to convection and radiation. The thermal conductivities of the two regions are k_A =10 W/m-K and k_B =15 W/m-K. The convective heat transfer coefficient is h=50 W/m²-K, and the fluid temperature is T_∞ =70 °C. The surrounding temperature is T_{surr} =27 °C. The temperature of top surface is T_s =66 °C and the thickness of each region is t=1 cm. A constant heat flux q" is coming into the plane at the bottom surface. The plane can be considered a blackbody. Consider 1-D conduction in the compound plane.
 - (a) Draw an appropriate control volume for compound plane and write the energy balance equation.
 - (b) What is the value of constant heat flux q"?
 - (c) Is radiation significant? Why (not)?
 - (d) Calculate the temperature at the interface of A and B and the bottom surface at steady state. Neglect any contact resistance.

2. A cylindrical rod of diameter D = 25 mm and thermal conductivity of k = 100 W/m.K protrudes normally from a furnace wall that is at T_w , and is covered by an insulation of thickness L_1 = 200 mm. A uniform heat flux of 45 kW/m² escapes through the furnace wall. This rod is welded to the furnace wall and is used as a hanger for supporting instrumentation cables. The exposed surface of the rod is cooled by natural convection by ambient air at 25 °C with convection coefficient h = 20 W/m²K. The length of the rod is much larger than the diameter, so that the exposed portion of the rod can be considered to be an infinitely long fin.

- (a) Sketch the temperature distribution within the rod from x=0 to x=L.
- (b) Compute the temperature of the furnace, T_w and the exposed surface temperature of the rod, T_0 , at x= L_1 .
- (c) Compute the effectiveness and efficiency of the fin (the exposed portion of the rod).
- (d) To avoid damaging the cables, T_0 must be maintained below a specified operating limit of 100° C. Does this rod meet the operating conditions? How does T_0 change with increase in (i) Rod diameter, D, (ii) Thermal conductivity of rod, k, and (iii) Thickness of the insulation, L_1 ?

- 3. A sphere 30 mm in diameter initially at 800 K is quenched in a large bath having a constant temperature of 300 K with a convection heat transfer coefficient of 75 W/m²K. The thermal conductivity of the sphere material is k = 1.7 W/mK and its thermal diffusivity of the sphere material is $\alpha = 2.5 \times 10^{-6}$ m²/s.
- (a) If we assume that the temperature of the sphere is uniform at any time (Lumped capacitance model *is valid*), calculate the time required for the sphere to reach 500 K.

For parts (b) and (c), assume that the lumped capacitance model is not valid.

- (b) Show, in a qualitative manner on T-t coordinates, the temperatures at the center and at the surface of the sphere as a function of time.
- (c) Calculate the time required for the center of the sphere to reach 500 K.