ME315 Fall 2013
Exam \#1 Solutions
Sept 24, 2013
Problem 1:

1 (a)

(iv) $R_{\text {conv,i }}=\frac{1}{h_{i}\left(2 \pi r_{1} L\right)}$ (Convection in the pipe)
(pt) $R_{\text {cond, } p}=\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k_{p} \cdot L}$ (conduction of the pipe wall)
Bit) $R_{\text {cont }}=R_{c}^{\prime \prime} \cdot\left(2 \pi r_{2} L\right)$ (contact resistance between the heater and pipe wall)
(185) $R_{\text {cond,in }}=\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi k_{s} \cdot L}$ (Conduction of the

Rpt $R_{\text {conn, } 0}=\frac{1}{h_{0}\left(2 \pi r_{3} \cdot L\right)} \quad \begin{aligned} & \text { (Convection on } \\ & \text { the outer wall }\end{aligned}$ of $\&$ insulation).
(b)

Consider the heater node

【

$$
\begin{aligned}
& R_{\text {pipe }}=R_{\text {conns }}+R_{\text {condsp }}+R_{\text {contact }} \\
& R_{\text {insulation }}=R_{\text {cons, in }}+R_{\text {conn, } 0}
\end{aligned}
$$

$q_{n}=q_{0}^{\prime \prime} \cdot\left(2 \pi r_{2} L\right) \quad$ heat generation by the heater.

$$
q_{p}=\frac{T_{n}-T_{i}}{R_{\text {pipe }}}=\frac{T_{n}-T_{i}}{\frac{1}{h_{i}\left(2 \pi r_{1} L\right)}+\frac{\ln \left(r_{2} / n\right)}{2 \pi k_{p} L}+R_{e}^{\prime \prime}\left(2 \pi r_{2} L\right)}
$$

heat flow rate from the heater to the AF mirctule apt

$$
q_{i}=\frac{T_{n}-T_{0}}{R_{\text {insulation }}}=\frac{T_{n}-T_{0}}{\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi k_{s} L}+\frac{1}{h_{0}\left(2 \pi r_{3} L\right)}}
$$

heat flow rate from the heater to the ambient flour.
(c) Apply the energy balance.

$$
\begin{aligned}
& \dot{E}_{m}^{\prime}=\dot{E}_{\text {out }} . \\
& \dot{E}_{\text {in }}=q_{0}^{\prime \prime}\left(2 \pi r_{2} \cdot L\right) \\
& \dot{E}_{\text {out }}=q_{p}+q_{i}=\frac{T_{h}-T_{i}}{R_{\text {pipe }}}+\frac{T_{n}-T_{0}}{R_{\text {insulation. }}} \\
& \therefore q_{0}^{\prime \prime}\left(2 \pi r_{2} L\right)=\frac{T_{n}-T_{i}}{R_{\text {pipe }}}+\frac{T_{n}-T_{0}}{R_{\text {insulation }}} \\
& \text { where } \\
& R_{\text {pipe }}=\frac{1}{h_{i}\left(2 \pi r_{1} L\right)}+\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k_{p} L}+R_{c}^{\prime \prime} \cdot\left(2 \pi r_{2} L\right) \\
& R_{\text {insulation }}=\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi k_{s} L}+\frac{1}{h_{0}\left(2 \pi r_{3} L\right)}
\end{aligned}
$$

Problem 2:

(a) Draw the thermal circuit for this problem. (7 points)

Note: $A_{t}-N^{*} A_{f}=A_{b}=A-N^{*} A_{C}$. For each element and node point they identify (1pt). Correctly connect the circuit (1pt).
(b) Find the conduction thermal resistance and convection thermal resistance for heat sink baseplate, and the fin thermal resistance for individual fin. (3+3+6 points)

From 1D conduction assumption, we know

$$
\mathrm{R}_{\mathrm{cond}, \mathrm{~b}}=\mathrm{L}_{\mathrm{b}} /\left(\mathrm{k}^{*} \mathrm{~A}\right)=0.1 \mathrm{~K} / \mathrm{W}(3 \mathrm{pt})
$$

Note: identify an equation (1pt). The equation is correct (1pt). The number is correct (1pt).

$$
\mathrm{R}_{\text {conv, }}=1 /\left(\mathrm{h}^{*} \mathrm{~A}_{\mathrm{b}}\right)=21.74 \mathrm{~K} / \mathrm{W} \text { (3pt) }
$$

Note: identify an equation (1pt). The equation is correct (1pt). The number is correct (1pt).

For infinite long fin, from the expression of total fin heat loss $q_{f}=\sqrt{h P k A_{c}} \theta_{b}$, we get

$$
R_{f}=\frac{1}{\sqrt{h P k A_{C}}}=55.9 \mathrm{~K} / W \quad(6 \mathrm{pt})
$$

Note: identify an equation (2pt). The equation is correct (2pt). The number is correct (2pt).
(c) Find the efficiency and effectiveness for individual fin. (3+3 points)

$$
\begin{equation*}
\eta_{f}=q_{f} / h A_{f} \theta_{b}=0 \tag{3pt}
\end{equation*}
$$

Note: identify an equation (1pt). The equation is correct (1pt). The number is correct (1pt).

$$
\begin{equation*}
\varepsilon_{f}=\frac{q_{f}}{h A_{C} \theta_{b}}=\sqrt{h P k A_{C}} /\left(h A_{C}\right)=44.72 \tag{3pt}
\end{equation*}
$$

Note: identify an equation (1pt). The equation is correct (1pt). The number is correct (1pt).
(d) Find the overall thermal resistance and highest temperature the device can reach during its operation. ($5+5$ points)

Therefore, the total thermal resistance is

$$
R_{\text {total }}=R_{\text {cond }, b}+\frac{N^{-1} R_{f} R_{\text {conv }, b}}{N^{-1} R_{f}+R_{\text {conv }, b}}=4.55 \mathrm{~K} / \mathrm{W}
$$

Note: setup an equation based on his/her thermal circuit drawing (2pt). The equation is correct (2pt). The number is correct (1pt).

From $q_{M a x}=\frac{T_{C}-T_{\infty}}{R_{\text {total }}}$, we can get $T_{C}=q_{M a x} R_{\text {total }}+T_{\infty}=65.5^{\circ} \mathrm{C}$ (5pt)
Note: identify an equation (2pt). The equation is correct (2pt). The number is correct (1pt).

Problem \#3:

(a) (5 pts) Recall that the Biot number was derived from the ratio of the temperature gradient within the object to the temperature gradient between the object and the surroundings. Determine a new Biot number for the contact resistance case and determine if the lumped capacitance analysis is appropriate. (Hint: You may assume the critical length scale for the conduction resistance within the sphere is $L_{c}=R / 3=D / 6$ and approximate the conductive resistance within the sphere as $R_{\text {cond }}=L_{c} /\left(k A_{s}\right)$, where A_{s} is the surface area of the sphere)
[3 pts] $B i_{c}=\frac{\Delta T_{\text {conduction }}}{\Delta T_{\text {contact }}}=\frac{q R_{\text {cond }}}{q R_{\text {contact }}}=\frac{q\left(L_{c} / k A_{s}\right)}{q R_{c}^{\prime \prime} / A_{s}}=\frac{L_{c}}{k R_{c}^{\prime \prime}}=\frac{D}{6 k R_{c}^{\prime \prime}}$
[1 pt] $B i_{c}=\frac{D}{6 k R_{c}^{\prime \prime}}=\frac{13 \mathrm{~mm}}{6\left(0.6 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}\right)\left(0.05 \frac{\mathrm{~m}^{2} \mathrm{~K}}{\mathrm{~W}}\right)}=0.072$
[1pt] Yes, a lumped capacitance approach is appropriate because $\mathrm{Bi}_{\mathrm{c}}<0.1$.
(b) (15 pts) Find the differential equation that describes the temperature of the $\mathrm{M} \& \mathrm{M}$ and determine the chocolate temperature as a function of time. Sketch the temperature profile making sure to label the relevant temperature and time scales including the initial temperature $\left[T_{i}\right]$, your hand's temperature $\left[T_{H}\right]$, and the value of the temperature of the chocolate after one thermal time constant $[\mathrm{T}(\mathrm{t}=\tau)$ and τ] on your graph/axes.

Assumptions:
(1) Lumped capacitance valid ($\mathrm{Bi}<0.1$) $\rightarrow \mathrm{T} \neq \mathrm{f}(\mathrm{r})$
(2) Constant properties
(3) No generation
[2 pts] Schematic and \backslash or general energy balance: $\dot{E}_{\text {in }}-\dot{E}_{\text {out }}+\dot{E}_{\text {gen }}=\dot{E}_{s t} \rightarrow \dot{E}_{\text {in }}=\dot{E}_{\text {st }}$
[1 pt] Conductive heat flux: $\quad q_{c}=\frac{A_{s}}{R_{c}^{\prime \prime}}\left(T_{H}-T(t)\right)$
[1 pt] Change in stored energy: $\dot{E}_{\text {st }}=\rho C_{p} V \frac{d T}{d t}$
[1 pt] Differential Equation: $\frac{A_{s}}{R_{c}^{\prime \prime}}\left(T_{H}-T(t)\right)=\rho C_{p} V \frac{d T}{d t}$

They may list each term in a single step from the energy balance for all 3 pts if correct. or $\quad-\frac{A_{s}}{R_{c}^{\prime \prime}} \theta=\rho C_{p} V \frac{d \theta}{d t}$, where $\theta=T-T_{H}$
[2 pts] $-\frac{A_{s}}{R_{c}^{\prime \prime}} \theta=\rho C_{p} V \frac{d \theta}{d t} \quad \rightarrow \quad-\frac{A_{s}}{\rho C_{p} V R_{c}^{\prime \prime}} d t=\frac{1}{\theta} d \theta$

$$
\rightarrow \quad-\frac{A_{s}}{\rho C_{p} V R_{c}^{\prime \prime}} t=\ln \theta+C_{1} \quad \rightarrow
$$

$\theta=\theta_{i} \exp \left(-\frac{A_{s}}{\rho C_{p} V R_{c}^{\prime \prime}} t\right)=\theta_{i} \exp \left(-\frac{t}{\tau}\right)$
(Derivation or recognizing the form from lumped capacitance model are acceptable)
[2 pt] Time Constant:

$$
\begin{aligned}
\tau & =\left(\frac{A_{s}}{\rho C_{p} V R_{c}^{\prime \prime}}\right)^{-1}=\left(\frac{4 \pi r^{2}}{\rho C_{p} \frac{4}{3} \pi r^{3} R_{c}^{\prime \prime}}\right)^{-1}=\frac{\rho C_{p} D R_{c}^{\prime \prime}}{6} \\
& =\frac{\left(1300^{\mathrm{kg}} / \mathrm{m}^{3}\right)(1500 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(13 \mathrm{~mm})\left(0.05 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}\right)}{6}=211.25 \mathrm{~s}
\end{aligned}
$$

$$
\text { [2 pt] } \begin{aligned}
& \frac{\theta(t=\tau)}{\theta_{i}}=\exp (-1)=0.367 \\
& \\
& T(t=\tau)=34^{\circ} \mathrm{C}+\left(20^{\circ} \mathrm{C}-34^{\circ} \mathrm{C}\right)(0.367)=28.9^{\circ} \mathrm{C}
\end{aligned}
$$

(c) (5 pts) How long you would need to hold the M\&M before it began to melt?

$$
\text { [3 pts] } \theta_{m}=T_{m}-T_{H}=\theta_{i} \exp \left(-\frac{t_{m}}{\tau}\right) \quad \rightarrow \quad t_{m}=-\tau \log \left(\frac{T_{m}-T_{H}}{T_{i}-T_{H}}\right)
$$

[2 pts] $t_{m}=-(211.25) \log \left(\frac{30^{\circ} \mathrm{C}-34^{\circ} \mathrm{C}}{20^{\circ} \mathrm{C}-34^{\circ} \mathrm{C}}\right)=264.6 \mathrm{~s}$
(d) (10 pts) Assuming that the temperature inside your mouth is also $T_{h}=34^{\circ} \mathrm{C}$, explain why might the M\&M begin to melt in your mouth within about 10 seconds? Calculate the Biot number for this case and determine if the lumped capacitance approach still valid for this condition?
[5 pts] Thermal time constant is significantly reduced ($\tau^{\sim} 10 \mathrm{~s}$). Considering the parameters in τ, the only value that could likely change is $\mathrm{R}^{\prime \prime}{ }_{c}$. Thus, decreased contact resistance could explain reduced time constant.
[1 pts] Assuming that lumped capacitance model still applies, calculate the new boundary resistance:

$$
\tau=\frac{\rho C_{p} D R_{c}^{\prime \prime}}{6} \rightarrow R_{c}^{\prime \prime}=\frac{6 \tau}{\rho C_{p} D}=\frac{6(10 \mathrm{~s})}{\left(1300 \mathrm{~kg} / \mathrm{m}^{3}\right)(1500 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(13 \mathrm{~mm})}=0.0024 \frac{\mathrm{~m}^{2} K}{\mathrm{~W}}
$$

[1 pts] Calculate the new Biot number:

$$
B i_{c}=\frac{D}{6 R^{\prime \prime} k}=\frac{(13 m m)}{6\left(0.0024 \frac{m^{2} K}{W}\right)(0.6 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})}=15
$$

[3 pt] No, the lumped capacitance is no longer valid since $\mathrm{Bi}>0.1$.

Some students may intuitively get to the answer that lumped capacitance approach is not valid without strictly calculating the new Bi number and $R^{\prime \prime}$ and could receive the 3 pts for their answer (if justified logically), but not the 2 pts for calculating $R^{\prime \prime}$ and $B i_{c}$.

Note, that the calculated new $\mathrm{R}^{\prime \prime}$ is not necessarily valid because equation for time constant was derived from lumped capacitance approach.

